Document Type

Journal Article

Publication Date

8-15-2017

Journal

Medical Science Monitor : International Medical Journal of Experimental and Clinical Research

Volume

23

Inclusive Pages

3932–3941

DOI

10.12659/MSM.905992

Abstract

Background

The aim of this study was to investigate the effects of metastasis-associated protein 1 (MTA1) deficiency during angiogenesis of pulmonary alveolar capillaries in mice and to determine the molecular mechanisms involved.

Material/Methods

The expressions of MTA1, CD34, vascular endothelial growth factor (VEGF), alpha smooth muscle actin (α-SMA), and HIF-1α were analyzed in the lungs of MTA1-knockout (KO) and wild-type mice at embryonic day 18.5 and 2 months by quantitative PCR, immunoblotting, and immunohistochemistry. The morphological changes were investigated during pulmonary alveolar capillary formation. The heart weight/body weight (HW/BW) ratio and the size of the right ventricular wall cardiomyocytes were also measured. Regulation of MTA1 on HIF-1α was determined in vitro.

Results

MTA1 deficiency reduced the number of pulmonary alveolar capillaries compared to the wild-type mice. MTA1-KO mice exhibited a decreased expression of HIF-1α and VEGF in the lungs. The retarded growth of the MTA1-KO mice was also noticed during the first week after birth. Accordingly, MTA1 deficiency resulted in increased infant mortality. In surviving adult mice, MTA1 deficiency induced myocardial hypertrophy, highlighted by an increased heart weight/body weight ratio and larger cardiomyocytes. In cultured cells, HIF-1α and VEGF levels were significantly upregulated upon MTA1 overexpression, suggesting a close relationship between all 3 molecules.

Conclusions

MTA1 participates in the formation of pulmonary capillaries via stabilization of HIF-1α. This finding sheds new light on the function of MTA1 in lung development, opening new avenues for the diagnosis/treatment of related pulmonary diseases.

Comments

Reproduced with permission of International Scientific Information. Medical Science Monitor

Creative Commons License

Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License.

Peer Reviewed

1

Open Access

1

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.