S Deivendran

Document Type

Journal Article

Publication Date



Scientific Reports






Despite a recognized role of DNA methyltransferase 3a (DNMT3a) in human cancer, the nature of its upstream regulator(s) and relationship with the master chromatin remodeling factor MTA1, continues to be poorly understood. Here, we found an inverse relationship between the levels of MTA1 and DNMT3a in human cancer and that high levels of MTA1 in combination of low DNMT3a status correlates well with poor survival of breast cancer patients. We discovered that MTA1 represses DNMT3a expression via HDAC1/YY1 transcription factor complex. Because IGFBP3 is an established target of DNMT3a, we investigated the effect of MTA1 upon IGFBP3 expression, and found a coactivator role of MTA1/c-Jun/Pol II coactivator complex upon the IGFBP3 transcription. In addition, MTA1 overexpression correlates well with low levels of DNMT3a which, in turn also correlates with a high IGFBP3 status in breast cancer patients and predicts a poor clinical outcome for breast cancer patients. These findings suggest that MTA1 could regulate the expression of IGFBP3 in both DNMT3a-dependent and -independent manner. Together findings presented here recognize an inherent role of MTA1 as a modifier of DNMT3a and IGFBP3 expression, and consequently, the role of MTA1-DNMT3a-IGFBP3 axis in breast cancer progression.


Reproduced with permission of Macmillan Publishers Ltd. part of Springer Nature

Creative Commons License

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.

Peer Reviewed


Open Access




To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.