The glucocorticoid receptor acts locally to protect dystrophic muscle and heart during disease
Document Type
Journal Article
Publication Date
5-1-2024
Journal
Disease models & mechanisms
Volume
17
Issue
5
DOI
10.1242/dmm.050397
Keywords
Heart; Inflammation; Mouse model; Muscle; Muscular dystrophy; Steroids
Abstract
Absence of dystrophin results in muscular weakness, chronic inflammation and cardiomyopathy in Duchenne muscular dystrophy (DMD). Pharmacological corticosteroids are the DMD standard of care; however, they have harsh side effects and unclear molecular benefits. It is uncertain whether signaling by physiological corticosteroids and their receptors plays a modifying role in the natural etiology of DMD. Here, we knocked out the glucocorticoid receptor (GR, encoded by Nr3c1) specifically in myofibers and cardiomyocytes within wild-type and mdx52 mice to dissect its role in muscular dystrophy. Double-knockout mice showed significantly worse phenotypes than mdx52 littermate controls in measures of grip strength, hang time, inflammatory pathology and gene expression. In the heart, GR deletion acted additively with dystrophin loss to exacerbate cardiomyopathy, resulting in enlarged hearts, pathological gene expression and systolic dysfunction, consistent with imbalanced mineralocorticoid signaling. The results show that physiological GR functions provide a protective role during muscular dystrophy, directly contrasting its degenerative role in other disease states. These data provide new insights into corticosteroids in disease pathophysiology and establish a new model to investigate cell-autonomous roles of nuclear receptors and mechanisms of pharmacological corticosteroids.
APA Citation
Oliver, Trinitee; Nguyen, Nhu Y.; Tully, Christopher B.; McCormack, Nikki M.; Sun, Christina M.; Fiorillo, Alyson A.; and Heier, Christopher R., "The glucocorticoid receptor acts locally to protect dystrophic muscle and heart during disease" (2024). GW Authored Works. Paper 4987.
https://hsrc.himmelfarb.gwu.edu/gwhpubs/4987
Department
Genomics and Precision Medicine