Document Type

Journal Article

Publication Date

11-8-2016

Journal

Environmental Health

Volume

15

Issue

1

Inclusive Pages

105

DOI

10.1186/s12940-016-0188-y

Abstract

BACKGROUND: Increased concern for potential health and environmental impacts of chemicals, including nanomaterials, in consumer products is driving demand for greater transparency regarding potential risks. Chemical hazard assessment is a powerful tool to inform product design, development and procurement and has been integrated into alternative assessment frameworks. The extent to which assessment methods originally designed for conventionally-sized materials can be used for nanomaterials, which have size-dependent physical and chemical properties, have not been well established. We contracted with a certified GreenScreen profiler to conduct three GreenScreen hazard assessments, for conventional silver and two forms of nanosilver. The contractor summarized publicly available literature, and used defined GreenScreen hazard criteria and expert judgment to assign and report hazard classification levels, along with indications of confidence in those assignments. Where data were not available, a data gap (DG) was assigned. Using the individual endpoint scores, an aggregated benchmark score (BM) was applied.

RESULTS: Conventional silver and low-soluble nanosilver were assigned the highest possible hazard score and a silica-silver nanocomposite called AGS-20 could not be scored due to data gaps. AGS-20 is approved for use as antimicrobials by the US Environmental Protection Agency.

CONCLUSIONS: An existing method for chemical hazard assessment and communication can be used - with minor adaptations- to compare hazards across conventional and nano forms of a substance. The differences in data gaps and in hazard profiles support the argument that each silver form should be considered unique and subjected to hazard assessment to inform regulatory decisions and decisions about product design and development. A critical limitation of hazard assessments for nanomaterials is the lack of nano-specific hazard data - where data are available, we demonstrate that existing hazard assessment systems can work. The work is relevant for risk assessors and regulators. We recommend that regulatory agencies and others require more robust data sets on each novel nanomaterial before granting market approval.

Comments

Reproduced with permission of BioMed Central Ltd. Environmental Health

Creative Commons License

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.

Peer Reviewed

1

Open Access

1

Share

COinS