Deep neural maps for unsupervised visualization of high-grade cancer in prostate biopsies
Document Type
Journal Article
Publication Date
6-1-2019
Journal
International Journal of Computer Assisted Radiology and Surgery
Volume
14
Issue
6
DOI
10.1007/s11548-019-01950-0
Keywords
Cancer diagnosis; Deep learning; Deep neural maps; Prostate cancer; Self-organizing maps; Temporal enhanced ultrasound
Abstract
© 2019, CARS. Prostate cancer (PCa) is the most frequent noncutaneous cancer in men. Early detection of PCa is essential for clinical decision making, and reducing metastasis and mortality rates. The current approach for PCa diagnosis is histopathologic analysis of core biopsies taken under transrectal ultrasound guidance (TRUS-guided). Both TRUS-guided systematic biopsy and MR-TRUS-guided fusion biopsy have limitations in accurately identifying PCa, intraoperatively. There is a need to augment this process by visualizing highly probable areas of PCa. Temporal enhanced ultrasound (TeUS) has emerged as a promising modality for PCa detection. Prior work focused on supervised classification of PCa verified by gold standard pathology. Pathology labels are noisy, and data from an entire core have a single label even when significantly heterogeneous. Additionally, supervised methods are limited by data from cores with known pathology, and a significant portion of prostate data is discarded without being used. We provide an end-to-end unsupervised solution to map PCa distribution from TeUS data using an innovative representation learning method, deep neural maps. TeUS data are transformed to a topologically arranged hyper-lattice, where similar samples are closer together in the lattice. Therefore, similar regions of malignant and benign tissue in the prostate are clustered together. Our proposed method increases the number of training samples by several orders of magnitude. Data from biopsy cores with known labels are used to associate the clusters with PCa. Cancer probability maps generated using the unsupervised clustering of TeUS data help intuitively visualize the distribution of abnormal tissue for augmenting TRUS-guided biopsies.
APA Citation
Sedghi, A., Pesteie, M., Javadi, G., Azizi, S., Yan, P., Kwak, J., Xu, S., Turkbey, B., Choyke, P., Pinto, P., Wood, B., Rohling, R., Abolmaesumi, P., & Mousavi, P. (2019). Deep neural maps for unsupervised visualization of high-grade cancer in prostate biopsies. International Journal of Computer Assisted Radiology and Surgery, 14 (6). http://dx.doi.org/10.1007/s11548-019-01950-0