Deep neural network for RFID-based activity recognition
Document Type
Conference Proceeding
Publication Date
10-3-2016
Journal
Proceedings of the Annual International Conference on Mobile Computing and Networking, MOBICOM
Volume
03-07-October-2016
DOI
10.1145/2987354.2987355
Keywords
Activity recognition; Deep neural network; Max pooling; RFID
Abstract
© 2016 ACM. We propose a Deep Neural Network (DNN) structure for RFID-based activity recognition. RFID data collected from several reader antennas with overlapping coverage have potential spatiotemporal relationships that can be used for object tracking. We augmented the standard fully-connected DNN structure with additional pooling layers to extract the most representative features. For model training and testing, we used RFID data from 12 tagged objects collected during 25 actual trauma resuscitations. Our results showed 76% recognition micro-accuracy for 7 resuscitation activities and 85% average micro-accuracy for 5 resuscitation phases, which is similar to existing system that, however, require the user to wear an RFID antenna.
APA Citation
Li, X., Zhang, Y., Li, M., Marsic, I., Yang, J., & Burd, R. (2016). Deep neural network for RFID-based activity recognition. Proceedings of the Annual International Conference on Mobile Computing and Networking, MOBICOM, 03-07-October-2016 (). http://dx.doi.org/10.1145/2987354.2987355