Document Type

Journal Article

Publication Date

7-22-2014

Journal

PLoS ONE

Volume

9

Issue

7

Inclusive Pages

Article number e102231

DOI

10.1371/journal.pone.0102231

Keywords

Cell Survival; Inhibitor of Apoptosis Proteins--physiology; Myasthenia Gravis--metabolism

Abstract

The mechanisms that underlie the development and maintenance of autoimmunity in myasthenia gravis are poorly understood. In this investigation, we evaluate the role of survivin, a member of the inhibitor of apoptosis protein family, in humans and in two animal models. We identified survivin expression in cells with B lymphocyte and plasma cells markers, and in the thymuses of patients with myasthenia gravis. A portion of survivin-expressing cells specifically bound a peptide derived from the alpha subunit of acetylcholine receptor indicating that they recognize the peptide. Thymuses of patients with myasthenia gravis had large numbers of survivin-positive cells with fewer cells in the thymuses of corticosteroid-treated patients. Application of a survivin vaccination strategy in mouse and rat models of myasthenia gravis demonstrated improved motor assessment, a reduction in acetylcholine receptor specific autoantibodies, and a retention of acetylcholine receptor at the neuromuscular junction, associated with marked reduction of survivin-expressing circulating CD20+ cells. These data strongly suggest that survivin expression in cells with lymphocyte and plasma cell markers occurs in patients with myasthenia gravis and in two animal models of myasthenia gravis. Survivin expression may be part of a mechanism that inhibits the apoptosis of autoreactive B cells in myasthenia gravis and other autoimmune disorders.

Comments

Reproduced with permission of PLoS ONE.

Creative Commons License

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.

Peer Reviewed

1

Open Access

1

Share

COinS