Document Type
Journal Article
Publication Date
2018
Journal
Scientific Reports
Volume
8
Inclusive Pages
2921
DOI
10.1038/s41598-018-21333-w
Abstract
Fluorescence optical imaging techniques have revolutionized the field of cardiac electrophysiology and advanced our understanding of complex electrical activities such as arrhythmias. However, traditional monocular optical mapping systems, despite having high spatial resolution, are restricted to a two-dimensional (2D) field of view. Consequently, tracking complex three-dimensional (3D) electrical waves such as during ventricular fibrillation is challenging as the waves rapidly move in and out of the field of view. This problem has been solved by panoramic imaging which uses multiple cameras to measure the electrical activity from the entire epicardial surface. However, the diverse engineering skill set and substantial resource cost required to design and implement this solution have made it largely inaccessible to the biomedical research community at large. To address this barrier to entry, we present an open source toolkit for building panoramic optical mapping systems which includes the 3D printing of perfusion and imaging hardware, as well as software for data processing and analysis. In this paper, we describe the toolkit and demonstrate it on different mammalian hearts: mouse, rat, and rabbit.
Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.
APA Citation
Gloschat, C., Aras, K., Gupta, S., Faye, N. R., Zhang, H., Kay, M. W., Efimov, I., & +several additional authors (2018). RHYTHM: An Open Source Imaging Toolkit for Cardiac Panoramic Optical Mapping. Scientific Reports, 8 (). http://dx.doi.org/10.1038/s41598-018-21333-w
Peer Reviewed
1
Open Access
1
Included in
Cardiovascular Diseases Commons, Medical Pharmacology Commons, Medical Physiology Commons, Pharmacology Commons, Physiology Commons
Comments
Reproduced with permission of Macmillan Publishers Ltd. Scientific Reports