Drug Clearance in Neonates: A Combination of Population Pharmacokinetic Modelling and Machine Learning Approaches to Improve Individual Prediction.
Document Type
Journal Article
Publication Date
11-1-2021
Journal
Clinical Pharmacokinetics
Volume
60
Issue
11
Inclusive Pages
1435-1448
DOI
10.1007/s40262-021-01033-x
Keywords
Drug Elimination Routes; Humans; Infant, Newborn; Machine Learning; Metabolic Clearance Rate; Models, Biological; Vancomycin
APA Citation
Tang, B., Guan, Z., Allegaert, K., Wu, Y., Manolis, E., Leroux, S., Yao, B., Shi, H., Li, X., Huang, X., Wang, W., Shen, A., Wang, X., Wang, T., Kou, C., Xu, H., Zhou, Y., Zheng, Y., Hao, G., Xu, B., Thomson, A., Capparelli, E., Biran, V., Simon, N., Meibohm, B., Lo, Y., Marques, R., Peris, J., Lutsar, I., Saito, J., Burggraaf, J., Jacqz-Aigrain, E., van den Anker, J., & Zhao, W. (2021). Drug Clearance in Neonates: A Combination of Population Pharmacokinetic Modelling and Machine Learning Approaches to Improve Individual Prediction.. Clinical Pharmacokinetics, 60 (11). http://dx.doi.org/10.1007/s40262-021-01033-x
Peer Reviewed
1
Comments
Epub 2021 May 27