Biomarkers distinguish apoptotic and necrotic cell death during hepatic ischemia/reperfusion injury in mice

Document Type

Journal Article

Publication Date

11-1-2014

Journal

Liver Transplantation

Volume

20

Issue

11

DOI

10.1002/lt.23958

Abstract

© 2014 AASLD. Hepatic ischemia/reperfusion (IRP) injury is a significant clinical problem during tumor-resection surgery (Pringle maneuver) and liver transplantation. However, the relative contribution of necrotic and apoptotic cell death to the overall liver injury is still controversial. To address this important issue with a standard murine model of hepatic IRP injury, plasma biomarkers of necrotic cell death such as micro-RNA 122, full-length cytokeratin 18 (FK18), and high-mobility group box 1 (HMGB1) protein and plasma biomarkers of apoptosis such as plasma caspase-3 activity and caspase-cleaved fragment of cytokeratin 18 (CK18) coupled with markers of inflammation (hyperacetylated HMGB1) were compared by histological features in hematoxylin and eosin-stained and terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labeling (TUNEL)-stained liver sections. After 45 minutes of hepatic ischemia and 1 to 24 hours of reperfusion, all necrosis markers increased dramatically in plasma by 40- to >10,000-fold over the baseline with a time course similar to that of alanine aminotransferase. These data correlated well with histological characteristics of necrosis. Within the area of necrosis, most cells were TUNEL positive; initially (≤3 hours of reperfusion), the staining was restricted to nuclei, but it later spread to the cytosol, and this is characteristic of karyorrhexis during necrotic cell death. In contrast, the lack of morphological evidence of apoptotic cell death and relevant caspase-3 activity in the postischemic liver correlated well with the absence of caspase-3 activity and CK18 (except for a minor increase at 3 hours of reperfusion) in plasma. A quantitative comparison of FK18 (necrosis) and CK18 (apoptosis) release indicated dominant cell death by necrosis during IRP and only a temporary and very minor degree of apoptosis. These data suggest that the focus of future research should be the elucidation of necrotic signaling mechanisms to identify relevant targets, which may be used to attenuate hepatic IRP injury.

This document is currently not available here.

Share

COinS