"Conditional expression of TGF-β1 in skeletal muscles causes endomysial" by Jigna Narola, Sachchida Nand Pandey et al.
 

Document Type

Journal Article

Publication Date

11-14-2013

Journal

PLoS ONE

Volume

Volume 8, Issue 11

Inclusive Pages

Article number e79356

Keywords

Gene Expression; Muscle, Skeletal--metabolism; Muscle, Skeletal--pathology; Muscular Atrophy--genetics; Muscular Atrophy--pathology; Transforming Growth Factor beta1--genetics

Abstract

To study the effects of transforming growth factor beta 1 (TGF-β1) on fibrosis and failure of regeneration of skeletal muscles, we generated a tet-repressible muscle-specific TGF-β1transgenic mouse in which expression of TGF-β1 is controlled by oral doxycycline. The mice developed muscle weakness and atrophy after TGF-β1 over-expression. We defined the group of mice that showed phenotype within 2 weeks as early onset (EO) and the rest as late onset (LO), which allowed us to further examine phenotypic differences between the groups. While only mice in the EO group showed significant muscle weakness, pathological changes including endomysial fibrosis and smaller myofibers were observed in both groups at two weeks after the TGF-β1 was over-expressed. In addition, the size of the myofibers and collagen accumulation were significantly different between the two groups. The amount of latent and active TGF-β1 in the muscle and circulation were significantly higher in the EO group compared to the LO or control groups. The up-regulation of the latent TGF-β1 indicated that endogenous TGF-β1 was induced by the expression of the TGF-β1 transgene. Our studies showed that the primary effects of TGF-β1 over-expression in skeletal muscles are muscle wasting and endomysial fibrosis. In addition, the severity of the pathology is associated with the total amount of TGF-β1 and the expression of endogenous TGF-β1. The findings suggest that an auto-feedback loop of TGF-β1 may contribute to the severity of phenotypes.

Comments

Reproduced with permission of PLoS ONE.

Creative Commons License

Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.

Peer Reviewed

1

Open Access

1

Share

COinS