Document Type

Journal Article

Publication Date





Volume 8, Issue 6

Inclusive Pages

Article number e-67569


Most genome linkage scans for autism spectrum disorders (ASDs) have failed to be replicated. Recently, a new ASD phenotypic sub-classification method was developed which employed cluster analyses of severity scores from the Autism Diagnostic Interview-Revised (ADI-R). Here, we performed linkage analysis for each of the four identified ADI-R stratified subgroups. Additional stratification was also applied to reduce intra-family heterogeneity and to investigate the impact of gender. For the purpose of replication, two independent sets of single nucleotide polymorphism markers for 392 families were used in our study. This deep subject stratification protocol resulted in 16 distinct group-specific datasets for linkage analysis. No locus reached significance for the combined non-stratified cohort. However, study-wide significant (P = 0.02) linkage scores were reached for chromosomes 22q11 (LOD = 4.43) and 13q21 (LOD = 4.37) for two subsets representing the most severely language impaired individuals with ASD. Notably, 13q21 has been previously linked to autism with language impairment, and 22q11 has been separately associated with either autism or language disorders. Linkage analysis on chromosome 5p15 for a combination of two stratified female-containing subgroups demonstrated suggestive linkage (LOD = 3.5), which replicates previous linkage result for female-containing pedigrees. A trend was also found for the association of previously reported 5p14-p15 SNPs in the same female-containing cohort. This study demonstrates a novel and effective method to address the heterogeneity in genetic studies of ASD. Moreover, the linkage results for the stratified subgroups provide evidence at the gene scan level for both inter- and intra-family heterogeneity as well as for gender-specific loci.


Reproduced with permission of PLoS ONE.

Creative Commons License

Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.

Peer Reviewed


Open Access




To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.