Bacterial succession during vermicomposting of silver wattle (Acacia dealbata link)
Document Type
Journal Article
Publication Date
1-1-2022
Journal
Microorganisms
Volume
10
Issue
1
DOI
10.3390/microorganisms10010065
Keywords
16S rRNA; Earthworms; Metataxonomics; Microbiome; Vermicompost
Abstract
Vermicomposting is the process of organic waste degradation through interactions between earthworms and microbes. A variety of organic wastes can be vermicomposted, producing a nutrient-rich final product that can be used as a soil biofertilizer. Giving the prolific invasive nature of the Australian silver wattle Acacia dealbata Link in Europe, it is important to find alternatives for its sustainable use. However, optimization of vermicomposting needs further comprehension of the fundamental microbial processes. Here, we characterized bacterial succession during the vermicomposting of silver wattle during 56 days using the earthworm species Eisenia andrei. We observed significant differences in α-and β-diversity between fresh silver wattle (day 0) and days 14 and 28, while the bacterial community seemed more stable between days 28 and 56. Accordingly, during the first 28 days, a higher number of taxa experienced significant changes in relative abundance. A microbiome core composed of 10 amplicon sequence variants was identified during the vermicomposting of silver wattle (days 14 to 56). Finally, predicted functional profiles of genes involved in cellulose metabolism, nitrification, and salicylic acid also changed significantly during vermicomposting. This study, hence, provides detailed insights of the bacterial succession occurring during vermicomposting of the silver wattle and the characteristics of its final product as a sustainable plant biofertilizer.
APA Citation
Rosado, Daniela; Pérez-Losada, Marcos; Aira, Manuel; and Domínguez, Jorge, "Bacterial succession during vermicomposting of silver wattle (Acacia dealbata link)" (2022). GW Authored Works. Paper 83.
https://hsrc.himmelfarb.gwu.edu/gwhpubs/83