Experience Dependence of Alpha Rhythms and Neural Dynamics in the Mouse Visual Cortex
Document Type
Journal Article
Publication Date
9-18-2024
Journal
The Journal of neuroscience : the official journal of the Society for Neuroscience
Volume
44
Issue
38
DOI
10.1523/JNEUROSCI.2011-22.2024
Keywords
alpha; arousal; blindness; gamma; oscillations; vision
Abstract
The role of experience in the development and maintenance of emergent network properties such as cortical oscillations and states is poorly understood. To define how early-life experience affects cortical dynamics in the visual cortex of adult, head-fixed mice, we examined the effects of two forms of blindness initiated before eye opening and continuing through recording: (1) bilateral loss of retinal input (enucleation) and (2) degradation of visual input (eyelid suture). Neither form of deprivation fundamentally altered the state-dependent regulation of firing rates or local field potentials. However, each deprivation caused unique changes in network behavior. Laminar analysis revealed two different generative mechanisms for low-frequency synchronization: one prevalent during movement and the other during quiet wakefulness. The former was absent in enucleated mice, suggesting a mouse homolog of human alpha oscillations. In addition, neurons in enucleated animals were less correlated and fired more regularly, but no change in mean firing rate. Eyelid suture decreased firing rates during quiet wakefulness, but not during movement, with no effect on neural correlations or regularity. Sutured animals showed a broadband increase in depth EEG power and an increased occurrence, but reduced central frequency, of narrowband gamma oscillations. The complementary-rather than additive-effects of lid suture and enucleation suggest that the development of emergent network properties does not require vision but is plastic to modified input. Our results suggest a complex interaction of internal set points and experience determines mature cortical activity, with low-frequency synchronization being particularly susceptible to early deprivation.
APA Citation
Riyahi, Pouria; Phillips, Marnie A.; Boley, Nathaniel; and Colonnese, Matthew T., "Experience Dependence of Alpha Rhythms and Neural Dynamics in the Mouse Visual Cortex" (2024). GW Authored Works. Paper 5627.
https://hsrc.himmelfarb.gwu.edu/gwhpubs/5627
Department
Pharmacology and Physiology