A coaxial excitation, dual-red-green-blue/near-infrared paired imaging system toward computer-aided detection of parathyroid glands in situ and ex vivo
Document Type
Journal Article
Publication Date
3-27-2022
Journal
Journal of biophotonics
DOI
10.1002/jbio.202200008
Keywords
deep learning; hypocalcemia; near-infrared autofluorescence; parathyroid glands; thyroid surgery
Abstract
Early and precise detection of parathyroid glands (PGs) is a challenging problem in thyroidectomy due to their small size and similar appearance to surrounding tissues. Near-infrared autofluorescence (NIRAF) has stimulated interest as a method to localize PGs. However, high incidence of false positives for PGs has been reported with this technique. We introduce a prototype equipped with a coaxial excitation light (785 nm) and a dual-sensor to address the issue of false positives with the NIRAF technique. We test the clinical feasibility of our prototype in situ and ex vivo using sterile drapes on 10 human subjects. Video data (1287 images) of detected PGs were collected to train, validate and compare the performance for PG detection. We achieved a mean average precision of 94.7% and a 19.5-millisecond processing time/detection. This feasibility study supports the effectiveness of the optical design and may open new doors for a deep learning-based PG detection method.
APA Citation
Kim, Yoseph; Lee, Hun Chan; Kim, Jongchan; Oh, Eugene; Yoo, Jennifer; Ning, Bo; Lee, Seung Yup; Ali, Khalid Mohamed; Tufano, Ralph P.; Russell, Jonathon O.; and Cha, Jaepyeong, "A coaxial excitation, dual-red-green-blue/near-infrared paired imaging system toward computer-aided detection of parathyroid glands in situ and ex vivo" (2022). GW Authored Works. Paper 536.
https://hsrc.himmelfarb.gwu.edu/gwhpubs/536
Department
Pediatrics