The Open Pediatric Cancer Project

Authors

Zhuangzhuang Geng, Center for Data-Driven Discovery in Biomedicine, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA; Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA.
Eric Wafula, Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA.
Ryan J. Corbett, Center for Data-Driven Discovery in Biomedicine, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA; Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA.
Yuanchao Zhang, Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA.
Run Jin, Center for Data-Driven Discovery in Biomedicine, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA; Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA.
Krutika S. Gaonkar, Center for Data-Driven Discovery in Biomedicine, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA; Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA; Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA.
Sangeeta Shukla, Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA.
Komal S. Rathi, Center for Data-Driven Discovery in Biomedicine, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA; Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA.
Dave Hill, Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA.
Aditya Lahiri, Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA.
Daniel P. Miller, Center for Data-Driven Discovery in Biomedicine, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA; Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA.
Alex Sickler, Center for Data-Driven Discovery in Biomedicine, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA; Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA.
Kelsey Keith, Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA.
Christopher Blackden, Center for Data- Driven Discovery in Biomedicine, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA; Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA.
Antonia Chroni, Center for Data-Driven Discovery in Biomedicine, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA; Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA.
Miguel A. Brown, Center for Data-Driven Discovery in Biomedicine, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA; Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA.
Adam A. Kraya, Center for Data-Driven Discovery in Biomedicine, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA; Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA.
Carl J. Koschmann, Department of Pediatrics, University of Michigan Health, Ann Arbor, MI, 48105, USA; Pediatric Hematology Oncology, Mott Children's Hospital, Ann Arbor, MI, 48109, USA.
Kenneth Aldape, Laboratory of Pathology, National Cancer Institute, Bethesda, MD, 20892, USA.
Xiaoyan Huang, Center for Data-Driven Discovery in Biomedicine, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA; Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA.
Brian R. Rood, Children's National Research Institute, Washington, D.C.; George Washington University School of Medicine and Health Sciences, Washington, D.C., 20052, USA.
Jennifer L. Mason, Center for Data-Driven Discovery in Biomedicine, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA; Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA.
Gerri R. Trooskin, Center for Data-Driven Discovery in Biomedicine, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA; Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA.
Zied Abdullaev, Laboratory of Pathology, National Cancer Institute, Bethesda, MD, 20892, USA.
Pei Wang, Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
Yuankun Zhu, Center for Data-Driven Discovery in Biomedicine, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA; Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA.
Bailey K. Farrow, Center for Data-Driven Discovery in Biomedicine, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA; Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA.
Alvin Farrel, Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA; Division of Oncology, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA; Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA · Funded by NCI/NIH Contract No. 75N91019D00024, Task Order No. 75N91020F00003.
Joseph M. Dybas, Center for Data-Driven Discovery in Biomedicine, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA; Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA.
Chuwei Zhong, Center for Data-Driven Discovery in Biomedicine, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA; Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA.
Nicholas Van Kuren, Center for Data-Driven Discovery in Biomedicine, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA; Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA.
Bo Zhang, Center for Data-Driven Discovery in Biomedicine, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA; Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA.

Document Type

Journal Article

Publication Date

7-11-2024

Journal

bioRxiv : the preprint server for biology

DOI

10.1101/2024.07.09.599086

Keywords

Pediatric cancer; multi-omics; open science; reproducibility

Abstract

BACKGROUND: In 2019, the Open Pediatric Brain Tumor Atlas (OpenPBTA) was created as a global, collaborative open-science initiative to genomically characterize 1,074 pediatric brain tumors and 22 patient-derived cell lines. Here, we extend the OpenPBTA to create the Open Pediatric Cancer (OpenPedCan) Project, a harmonized open-source multi-omic dataset from 6,112 pediatric cancer patients with 7,096 tumor events across more than 100 histologies. Combined with RNA-Seq from the Genotype-Tissue Expression (GTEx) and The Cancer Genome Atlas (TCGA), OpenPedCan contains nearly 48,000 total biospecimens (24,002 tumor and 23,893 normal specimens). FINDINGS: We utilized Gabriella Miller Kids First (GMKF) workflows to harmonize WGS, WXS, RNA-seq, and Targeted Sequencing datasets to include somatic SNVs, InDels, CNVs, SVs, RNA expression, fusions, and splice variants. We integrated summarized CPTAC whole cell proteomics and phospho-proteomics data, miRNA-Seq data, and have developed a methylation array harmonization workflow to include m-values, beta-vales, and copy number calls. OpenPedCan contains reproducible, dockerized workflows in GitHub, CAVATICA, and Amazon Web Services (AWS) to deliver harmonized and processed data from over 60 scalable modules which can be leveraged both locally and on AWS. The processed data are released in a versioned manner and accessible through CAVATICA or AWS S3 download (from GitHub), and queryable through PedcBioPortal and the NCI's pediatric Molecular Targets Platform. Notably, we have expanded PBTA molecular subtyping to include methylation information to align with the WHO 2021 Central Nervous System Tumor classifications, allowing us to create research- grade integrated diagnoses for these tumors. CONCLUSIONS: OpenPedCan data and its reproducible analysis module framework are openly available and can be utilized and/or adapted by researchers to accelerate discovery, validation, and clinical translation.

Department

Pediatrics

Share

COinS