Cost-effectiveness analysis under multiple effectiveness outcomes: A probabilistic approach
Document Type
Journal Article
Publication Date
7-3-2023
Journal
Statistics in medicine
DOI
10.1002/sim.9841
Keywords
U-statistics; cost-effectiveness probability (CEP); lower confidence limit; parametric bootstrap
Abstract
Probability based criteria are proposed for the assessment of cost-effectiveness of a new treatment compared to a standard treatment when there are multiple effectiveness measures. Depending on the preferences of a policy maker, there are several options to define such criteria. Two such metrics are investigated in detail. One metric is defined as the conditional probability that a new treatment is more effective with respect to the multiple effectiveness measures for patients having lower costs under the new treatment. A second metric is defined as the conditional probability that a new treatment is less costly for patients having greater health benefits under the new treatment. The metrics offer considerable flexibility to a policy maker as thresholds for cost and effectiveness can be incorporated into the metrics. Parametric confidence limits are developed using a percentile bootstrap approach assuming multivariate normality for the joint distribution of the log(cost) and effectiveness measures. A non-parametric estimation procedure is also developed using the theory of U-statistics. Numerical results indicate that the proposed confidence limits accurately maintain coverage probabilities. The methodologies are illustrated using a study on the treatment of type two diabetes. Code implementing the proposed methods are provided in the supporting information.
APA Citation
Arsham, Aryana; Bebu, Ionut; and Mathew, Thomas, "Cost-effectiveness analysis under multiple effectiveness outcomes: A probabilistic approach" (2023). GW Authored Works. Paper 3125.
https://hsrc.himmelfarb.gwu.edu/gwhpubs/3125
Department
Biostatistics and Bioinformatics