Wireless, fully implantable cardiac stimulation and recording with on-device computation for closed-loop pacing and defibrillation
Document Type
Journal Article
Publication Date
10-28-2022
Journal
Science advances
Volume
8
Issue
43
DOI
10.1126/sciadv.abq7469
Abstract
Monitoring and control of cardiac function are critical for investigation of cardiovascular pathophysiology and developing life-saving therapies. However, chronic stimulation of the heart in freely moving small animal subjects, which offer a variety of genotypes and phenotypes, is currently difficult. Specifically, real-time control of cardiac function with high spatial and temporal resolution is currently not possible. Here, we introduce a wireless battery-free device with on-board computation for real-time cardiac control with multisite stimulation enabling optogenetic modulation of the entire rodent heart. Seamless integration of the biointerface with the heart is enabled by machine learning-guided design of ultrathin arrays. Long-term pacing, recording, and on-board computation are demonstrated in freely moving animals. This device class enables new heart failure models and offers a platform to test real-time therapeutic paradigms over chronic time scales by providing means to control cardiac function continuously over the lifetime of the subject.
APA Citation
Ausra, Jokubas; Madrid, Micah; Yin, Rose T.; Hanna, Jessica; Arnott, Suzanne; Brennan, Jaclyn A.; Peralta, Roberto; Clausen, David; Bakall, Jakob A.; Efimov, Igor R.; and Gutruf, Philipp, "Wireless, fully implantable cardiac stimulation and recording with on-device computation for closed-loop pacing and defibrillation" (2022). GW Authored Works. Paper 1726.
https://hsrc.himmelfarb.gwu.edu/gwhpubs/1726
Department
School of Medicine and Health Sciences Resident Works