Induction of mastitis by cow-to-mouse fecal and milk microbiota transplantation causes microbiome dysbiosis and genomic functional perturbation in mice
Document Type
Journal Article
Publication Date
7-6-2022
Journal
Animal microbiome
Volume
4
Issue
1
DOI
10.1186/s42523-022-00193-w
Keywords
Cows; Dysbiosis; Feces; Mammary gland; Mastitis; Mice; Microbiomes; Milk; Transplantations
Abstract
BACKGROUND: Mastitis pathogenesis involves a wide range of opportunistic and apparently resident microorganims including bacteria, viruses and archaea. In dairy animals, microbes reside in the host, interact with environment and evade the host immune system, providing a potential for host-tropism to favor mastitis pathogenesis. To understand the host-tropism phenomena of bovine-tropic mastitis microbiomes, we developed a cow-to-mouse mastitis model. METHODS: A cow-to-mouse mastitis model was established by fecal microbiota transplantation (FMT) and milk microbiota transplantation (MMT) to pregnant mice to assess microbiome dysbiosis and genomic functional perturbations through shotgun whole metagenome sequencing (WMS) along with histopathological changes in mice mammary gland and colon tissues. RESULTS: The cow-to-mouse FMT and MMT from clinical mastitis (CM) cows induced mastitis syndromes in mice as evidenced by histopathological changes in mammary gland and colon tissues. The WMS of 24 samples including six milk (CM = 3, healthy; H = 3), six fecal (CM = 4, H = 2) samples from cows, and six fecal (CM = 4, H = 2) and six mammary tissue (CM = 3, H = 3) samples from mice generating 517.14 million reads (average: 21.55 million reads/sample) mapped to 2191 bacterial, 94 viral and 54 archaeal genomes. The Kruskal-Wallis test revealed significant differences (p = 0.009) in diversity, composition, and relative abundances in microbiomes between CM- and H-metagenomes. These differences in microbiome composition were mostly represented by Pseudomonas aeruginosa, Lactobacillus crispatus, Klebsiella oxytoca, Enterococcus faecalis, Pantoea dispersa in CM-cows (feces and milk), and Muribaculum spp., Duncaniella spp., Muribaculum intestinale, Bifidobacterium animalis, Escherichia coli, Staphylococcus aureus, Massilia oculi, Ralstonia pickettii in CM-mice (feces and mammary tissues). Different species of Clostridia, Bacteroida, Actinobacteria, Flavobacteriia and Betaproteobacteria had a strong co-occurrence and positive correlation as the indicator species of murine mastitis. However, both CM cows and mice shared few mastitis-associated microbial taxa (1.14%) and functional pathways regardless of conservation of mastitis syndromes, indicating the higher discrepancy in mastitis-associated microbiomes among lactating mammals. CONCLUSIONS: We successfully induced mastitis by FMT and MMT that resulted in microbiome dysbiosis and genomic functional perturbations in mice. This study induced mastitis in a mouse model through FMT and MMT, which might be useful for further studies- focused on pathogen(s) involved in mastitis, their cross-talk among themselves and the host.
APA Citation
Hoque, M Nazmul; Rahman, M Shaminur; Islam, Tofazzal; Sultana, Munawar; Crandall, Keith A.; and Hossain, M Anwar, "Induction of mastitis by cow-to-mouse fecal and milk microbiota transplantation causes microbiome dysbiosis and genomic functional perturbation in mice" (2022). GW Authored Works. Paper 1351.
https://hsrc.himmelfarb.gwu.edu/gwhpubs/1351
Department
Biostatistics and Bioinformatics