Milken Institute School of Public Health Poster Presentations (Marvin Center & Video)

Document Type

Poster

Abstract Category

Rehabilitation and Recovery

Keywords

Multiple Sclerosis, AMAT, muscle performance, function

Publication Date

Spring 2019

Abstract

Background: People with multiple sclerosis (PwMS) are at greater risk for decreased muscle performance which may lead to decreased functional abilities. The Kurtzke Expanded Disability Status Scale (EDSS) is commonly used as a disability status rating scale in PwMS. Nevertheless, the EDSS is largely comprised of neurological tests and may not best reflect functional performance. A functional battery such as The Adult Myopathy Assessment Tool (AMAT) may better reflect functional performance. The AMAT was designed to assess both functional strength and endurance in clinical settings. However, the AMAT has not been validated for the assessment of PwMS.

Objective: The purpose of the study was to determine the comparative association of the AMAT and EDSS with measures of strength, fatigability, and functional performance. Methods: Twenty-nine people (mean age 48.6 ±11.2), with a history of MS (EDSS < 7.0) were recruited. Participants completed functional testing (5 times sit to stand and gait speed) and an assessment of disability and functional status using the EDSS and AMAT, respectively. Muscle performance was assessed via a 60 s maximal volitional isometric contraction (MVIC) of the knee extensors using an isokinetic dynamometer, and expressed as fatigability (exhaustion time to 60% of MVIC), peak torque, and peak torque scaled to body weight.

Results:The participants exhibited moderate levels of disability (EDSS, 3.6 ±1.4) and function (AMAT total score, 36.1 ±7.6; AMAT function subscale, 18.2 ±3.3). Peak force was 70.1 kg ±22.0 kg, exhaustion time was 38.4 s ±17.4 s, gait speed was 1.3 m/s ±0.3 m/s, and five time sit to stand was 11.4 s ±4.1 s. The AMAT function subscale was associated with scaled peak torque (r=0.426, p=.021), gait speed (r=0.825, p=0.00), and 5 time sit to stand (r=-0.632, p

Conclusions: The AMAT was more strongly associated with scaled peak torque and functional measures in comparison to the EDSS. This may reflect the observation that relative strength is a better predictor of functional abilities than unadjusted strength measures. Whereas, the stronger association of the EDSS with fatigability may be explained by the pyramidal systems measures within the tool and the well-known association of MS-related fatigue with disability. Based on the results of the study, we suggest clinicians administer the AMAT in addition to the EDSS, to gain insight into functional impairments and assist with formulating a comprehensive plan of care.

Creative Commons License

Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License.

Open Access

1

Comments

Presented at Research Days 2019.

Included in

Public Health Commons

Share

COinS
 

Use of the Adult Myopathy Assessment Tool as a predictor of functional abilities in people with multiple sclerosis

Background: People with multiple sclerosis (PwMS) are at greater risk for decreased muscle performance which may lead to decreased functional abilities. The Kurtzke Expanded Disability Status Scale (EDSS) is commonly used as a disability status rating scale in PwMS. Nevertheless, the EDSS is largely comprised of neurological tests and may not best reflect functional performance. A functional battery such as The Adult Myopathy Assessment Tool (AMAT) may better reflect functional performance. The AMAT was designed to assess both functional strength and endurance in clinical settings. However, the AMAT has not been validated for the assessment of PwMS.

Objective: The purpose of the study was to determine the comparative association of the AMAT and EDSS with measures of strength, fatigability, and functional performance. Methods: Twenty-nine people (mean age 48.6 ±11.2), with a history of MS (EDSS < 7.0) were recruited. Participants completed functional testing (5 times sit to stand and gait speed) and an assessment of disability and functional status using the EDSS and AMAT, respectively. Muscle performance was assessed via a 60 s maximal volitional isometric contraction (MVIC) of the knee extensors using an isokinetic dynamometer, and expressed as fatigability (exhaustion time to 60% of MVIC), peak torque, and peak torque scaled to body weight.

Results:The participants exhibited moderate levels of disability (EDSS, 3.6 ±1.4) and function (AMAT total score, 36.1 ±7.6; AMAT function subscale, 18.2 ±3.3). Peak force was 70.1 kg ±22.0 kg, exhaustion time was 38.4 s ±17.4 s, gait speed was 1.3 m/s ±0.3 m/s, and five time sit to stand was 11.4 s ±4.1 s. The AMAT function subscale was associated with scaled peak torque (r=0.426, p=.021), gait speed (r=0.825, p=0.00), and 5 time sit to stand (r=-0.632, p

Conclusions: The AMAT was more strongly associated with scaled peak torque and functional measures in comparison to the EDSS. This may reflect the observation that relative strength is a better predictor of functional abilities than unadjusted strength measures. Whereas, the stronger association of the EDSS with fatigability may be explained by the pyramidal systems measures within the tool and the well-known association of MS-related fatigue with disability. Based on the results of the study, we suggest clinicians administer the AMAT in addition to the EDSS, to gain insight into functional impairments and assist with formulating a comprehensive plan of care.

 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.