Assessing patterns of variation in BV/TV in the calcaneus and C2 vertebra of Gorilla gorilla, Pan troglodytes, and populations of Homo sapiens from the Pleistocene and Holocene that differ in physical activity levels

Document Type

Journal Article

Publication Date



American Journal of Physical Anthropology








calcaneus; trabecular bone; variation


Objectives: Because trabecular bone volume fraction (BV/TV) is influenced by variations in physical activity recent declines in BV/TV in humans are often attributed to modern sedentary lifestyles. This study tests the hypothesis that presumed variations in mechanical loading between groups can predict the observed BV/TV patterns in humans, chimpanzees and gorillas in two bones: the calcaneus which experiences high and well characterized impact forces, and the C2 vertebrae which experiences reduced locomotor forces. Materials and methods: BV/TV and other structural variables were quantified from high-resolution microCT scans in gorillas, chimpanzees, and four Homo sapiens populations: Pleistocene, semi-sedentary Natufians; Holocene hunter-gatherers from Point Hope, Alaska; Holocene nomadic pastoralists from medieval Europe; and modern, sedentary Americans. Results: In the calcaneal tuberosity, Natufian BV/TV was 36, 46, and 46% greater than Alaskans (p =.02), Europeans (p =.005) and modern Americans (p =.002), respectively, but not significantly different from apes. BV/TV was not significantly different between modern Americans and Alaskans or Europeans. In the C2, Natufian BV/TV was 53 and 25% greater than in the Alaskan (p =.0001) and European (p =.048) populations. Discussion: These results suggest that phenomena other than or in addition to variations in physical activity are needed to explain BV/TV patterns observed in H. sapiens, and point to a systemic decline in H. sapiens BV/TV after the Pleistocene.