Role of extracellular sialic acid in regulation of neuronal and network excitability in the rat hippocampus.

Document Type

Journal Article

Publication Date



The Journal of neuroscience : the official journal of the Society for Neuroscience






Action Potentials; Animals; Extracellular Fluid; Hippocampus; Membrane Potentials; N-Acetylneuraminic Acid; Nerve Net; Neurons; Rats; Rats, Sprague-Dawley


The extracellular membrane surface contains a substantial amount of negatively charged sialic acid residues. Some of the sialic acids are located close to the pore of voltage-gated channel, substantially influencing their gating properties. However, the role of sialylation of the extracellular membrane in modulation of neuronal and network activity remains primarily unknown. The level of sialylation is controlled by neuraminidase (NEU), the key enzyme that cleaves sialic acids. Here we show that NEU treatment causes a large depolarizing shift of voltage-gated sodium channel activation/inactivation and action potential (AP) threshold without any change in the resting membrane potential of hippocampal CA3 pyramidal neurons. Cleavage of sialic acids by NEU also reduced sensitivity of sodium channel gating and AP threshold to extracellular calcium. At the network level, exogenous NEU exerted powerful anticonvulsive action both in vitro and in acute and chronic in vivo models of epilepsy. In contrast, a NEU blocker (N-acetyl-2,3-dehydro-2-deoxyneuraminic acid) dramatically reduced seizure threshold and aggravated hippocampal seizures. Thus, sialylation appears to be a powerful mechanism to control neuronal and network excitability. We propose that decreasing the amount of extracellular sialic acid residues can be a useful approach to reduce neuronal excitability and serve as a novel therapeutic approach in the treatment of seizures.

Peer Reviewed


Find in your library