Document Type

Journal Article

Publication Date



Journal of Cardiovascular Magnetic Resonance





Inclusive Pages





BACKGROUND: Conventional guidewires are not suitable for use during cardiovascular magnetic resonance (CMR) catheterization. They employ metallic shafts for mechanical performance, but which are conductors subject to radiofrequency (RF) induced heating. To date, non-metallic CMR guidewire designs have provided inadequate mechanical support, trackability, and torquability. We propose a metallic guidewire for CMR that is by design intrinsically safe and that retains mechanical performance of commercial guidewires.

METHODS: The NHLBI passive guidewire is a 0.035" CMR-safe, segmented-core nitinol device constructed using short nitinol rod segments. The electrical length of each segment is less than one-quarter wavelength at 1.5 Tesla, which eliminates standing wave formation, and which therefore eliminates RF heating along the shaft. Each of the electrically insulated segments is connected with nitinol tubes for stiffness matching to assure uniform flexion. Iron oxide markers on the distal shaft impart conspicuity. Mechanical integrity was tested according to International Organization for Standardization (ISO) standards. CMR RF heating safety was tested in vitro in a phantom according to American Society for Testing and Materials (ASTM) F-2182 standard, and in vivo in seven swine. Results were compared with a high-performance commercial nitinol guidewire.

RESULTS: The NHLBI passive guidewire exhibited similar mechanical behavior to the commercial comparator. RF heating was reduced from 13 °C in the commercial guidewire to 1.2 °C in the NHLBI passive guidewire in vitro, using a flip angle of 75°. The maximum temperature increase was 1.1 ± 0.3 °C in vivo, using a flip angle of 45°. The guidewire was conspicuous during left heart catheterization in swine.

CONCLUSIONS: We describe a simple and intrinsically safe design of a metallic guidewire for CMR cardiovascular catheterization. The guidewire exhibits negligible heating at high flip angles in conformance with regulatory guidelines, yet mechanically resembles a high-performance commercial guidewire. Iron oxide markers along the length of the guidewire impart passive visibility during real-time CMR. Clinical translation is imminent.


Reproduced with permission of BioMed Central Ltd. Journal of Cardiovascular Magnetic Resonance Imaging.

Creative Commons License

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.

Peer Reviewed


Open Access


Included in

Pediatrics Commons