Title

Decline in DJ-1 and decreased nuclear translocation of Nrf2 in Fuchs endothelial corneal dystrophy

Document Type

Journal Article

Publication Date

8-1-2012

Journal

Investigative Ophthalmology and Visual Science

Volume

53

Issue

9

DOI

10.1167/iovs.12-10119

Abstract

PURPOSE. This study sought to determine factors involved in nuclear factor erythroid 2-related factor 2 (Nrf2) regulation and their response to oxidative stress in Fuchs endothelial corneal dystrophy (FECD) and normal corneal endothelial cells (CECs). METHODS. FECD corneal buttons were obtained from transplantations and normal human corneas from tissue banks. Oxidative stress was induced by tert-butyl hydroperoxide (tBHP). Protein and mRNA levels of Nrf2, DJ-1, p53, and Kelchlike ECH-associated protein1 (Keap1) were investigated using Western blotting and real-time PCR. Immunoprecipitation was used to detect levels of oxidized DJ-1 protein and Cullin 3- (Cul3)-regulated degradation of DJ-1 in immortalized FECD (FECDi) and normal CEC (HCECi) cell lines. Nrf2 subcellular localization was assessed by immunocytochemistry. RESULTS. Nrf2 protein stabilizer, DJ-1, decreased significantly in FECD CECs compared with normal, whereas Nrf2 protein repressor, Keap1, was unchanged at baseline but increased under oxidative stress. Under oxidative stress, normal CECs upregulated DJ-1 protein synthesis, whereas FECD CECs did not. DJ-1 decline correlated with increased DJ-1 oxidative modification and carbonylation in FECDi as compared with HCECi. Increased labeling of immunoprecipitated DJ-1 protein with anti-Cul3 antibody indicated enhanced DJ-1 degradation in FECDi as compared with HCECi. Following tBHP treatment, Nrf2 translocated from cytoplasm to nuclei in normal CECs, whereas Nrf2 nuclear localization was not observed in FECD. CONCLUSIONS. Decreased levels of DJ-1 in FECD at baseline and under oxidative stress correlate with impaired Nrf2 nuclear translocation and heightened cell susceptibility to apoptosis. Targeting the DJ-1/Nrf2 axis could yield a mechanism to slow CEC degeneration in FECD. © 2012 The Association for Research in Vision and Ophthalmology, Inc.

Share

COinS