Title

Automated peritoneal dialysis prescriptions for enhancing sodium and fluid removal: a predictive analysis of optimized, patient-specific dwell times for the day period

Document Type

Journal Article

Publication Date

11-1-2013

Journal

Peritoneal dialysis international : journal of the International Society for Peritoneal Dialysis

Volume

33

Issue

6

DOI

10.3747/pdi.2012.00261

Keywords

Therapy optimization; dry period; individualized dwell time; sodium removal; ultrafiltration; ultrafiltration efficiency

Abstract

BACKGROUND: Remaining edema-free is a challenge for many automated peritoneal dialysis (APD) patients, especially those with fast ("high") transport characteristics. Although increased use of peritoneal dialysis (PD) solutions with high glucose concentrations may improve volume control, frequent use of such solutions is undesirable. METHODS: We used the 3-pore kinetic model to evaluate 4 alternative therapy prescriptions for the APD day exchange in anuric patients with high, high-average, and low-average transport characteristics. Four prescriptions were modeled: Therapy 1: Optimal, individualized dwell times with a dry period. Therapy 2: Use of a midday exchange. Therapy 3: Use of an icodextrin-containing dialysate during a 14-hour dwell. Therapy 4: Use of optimal, individualized dwell times, followed by an icodextrin dwell to complete the daytime period. The alternative therapies were compared with a reference standard therapy using glucose solution during a 14-hour dwell. The nighttime prescription was identical in all cases (10 L over 10 hours), and all glucose solutions contained 2.27% glucose. Net ultrafiltration (UF), sodium removal (NaR), total carbohydrate (CHO) absorption, and weekly urea Kt/V for a 24-hour period were computed and compared. RESULTS: The UF and NaR were substantially higher with therapy 1 than with standard therapy (1034 mL vs 621 mL and 96 mmol vs 51 mmol respectively), without significant changes in CHO absorption or urea Kt/V. However, therapy 1 resulted in reduced β2-microglobulin clearance (0.74 mL/min vs 0.89 mL/min with standard therapy). Compared with therapy 1, therapy 2 improved UF and NaR (1062 mL vs 1034 mL and 99 mmol vs 96 mmol); however, that improvement is likely not clinically significant. Therapy 2 also resulted in a higher Kt/V (2.07 vs 1.72), but at the expense of higher glucose absorption (difference: 42 g). The UF and NaR were highest with a long icodextrin-containing daytime dwell either preceded by a short optimized dwell (1426 mL and 155 mmol) or without such a dwell (1327 mL and 148 mmol). CONCLUSIONS: The 3-pore model predictions revealed that patient-specific optimal dwell times and regimens with a longer day dwell might provide improved UF and NaR options in APD patients with a variety of peritoneal membrane transport characteristics. In patients without access to icodextrin, therapy 1 might enhance UF and NaR and provide a short-term option to increase fluid removal. Although that approach may offer clinicians a therapeutic option for the overhydrated patient who requires increased UF in the short term, APD prescriptions including icodextrin provide a means to augment sodium and fluid removal. Data from clinical trials are needed to confirm the predictions from this study.

Share

COinS