Medulloblastoma rendered susceptible to NK-cell attack by TGFβ neutralization

Document Type

Journal Article

Publication Date



Journal of Translational Medicine








Adoptive immunotherapy; Medulloblastoma; NK cells; TGFβ


Background: Medulloblastoma (MB), the most common pediatric brain cancer, presents with a poor prognosis in a subset of patients with high risk disease, or at recurrence, where current therapies are ineffective. Cord blood (CB) natural killer (NK) cells may be promising off-The-shelf effector cells for immunotherapy due to their recognition of malignant cells without the need for a known target, ready availability from multiple banks, and their potential to expand exponentially. However, they are currently limited by immune suppressive cytokines secreted in the MB tumor microenvironment including Transforming Growth Factor β (TGF-β). Here, we address this challenge in in vitro models of MB. Methods: CB-derived NK cells were modified to express a dominant negative TGF-β receptor II (DNRII) using retroviral transduction. The ability of transduced CB cells to maintain function in the presence of medulloblastoma-conditioned media was then assessed. Results: We observed that the cytotoxic ability of nontransduced CB-NK cells was reduced in the presence of TGF-β-rich, medulloblastoma-conditioned media (21.21 ± 1.19% killing at E:T 5:1 in the absence vs. 14.98 ± 2.11% in the presence of medulloblastoma-conditioned media, n = 8, p = 0.02), but was unaffected in CB-derived DNRII-Transduced NK cells (21.11 ± 1.84% killing at E:T 5:1 in the absence vs. 21.81 ± 3.37 in the presence of medulloblastoma-conditioned media, n = 8, p = 0.85. We also observed decreased expression of CCR2 in untransduced NK cells (mean CCR2 MFI 826 ± 117 in untransduced NK + MB supernatant from mean CCR2 MFI 1639.29 ± 215 in no MB supernatant, n = 7, p = 0.0156), but not in the transduced cells. Finally, we observed that CB-derived DNRII-Transduced NK cells may protect surrounding immune cells by providing a cytokine sink for TGF-β (decreased TGF-β levels of 610 ± 265 pg/mL in CB-derived DNRII-Transduced NK cells vs. 1817 ± 342 pg/mL in untransduced cells; p = 0.008). Conclusions: CB NK cells expressing a TGF-β DNRII may have a functional advantage over unmodified NK cells in the presence of TGF-β-rich MB, warranting further investigation on its potential applications for patients with medulloblastoma.