Influence of age on stress responses to metabolic cage housing in rats

Document Type

Journal Article

Publication Date



Cellular and Molecular Neurobiology








Age; Isolation stress; Locomotor behavior; Metabolic cages; Metabolic response; Rats


1. We studied the effect of isolation stress in 3- and 12-month-old rats individually housed in metabolic cages for 7 days. Urine (24 hr) was collected daily from one group of animals of each age. The other group was tested in an open field and on a hot plate on days 1 and 7. 2. Total deambulation in the open-field test was lower in young than in older rats both on day 1 (54.7 ± 9.9 vs 80 ± 8.9 crossings/session; P < 0.04) and on day 7 (21 ± 9 vs 48 ± 7 crossings per session; P < 0.04) and decreased significantly in the two groups when tested on day 7 (P < 0.03). Latency to paw-licking in the hot-plate test was longer in young than in older animals on day 1 (14 ± 2 vs 8 ± 4 sec; P < 0.05) but was similar in the two groups on day 7. 3. Urinary excretions of norepinephrine (NE) and epinephrine (E) were determined by HPLC with electrochemical detection. Urinary NE in day 1 was similar in young and older animals (2627 ± 828 vs 3069 ± 598 ng/24 hr). In young animals NE excretion decreased along the study and was significantly (P < 0.02) lower than on day 1 during the last 3 days of the study. Conversely, in older animals urinary excretion of NE remained similar throughout the study. On day 7 urinary excretion of NE in older animals was about two fold that in young rats. Urinary E was similar in young and older rats (341 ± 127 vs 532 ± 256 ng/24 hr) on day 1 and showed a tendency to increase throughout the study. 4. Urinary monoamine oxidase inhibitory (IMAO) activity was determined by testing the ability of urine extracts to inhibit rat liver (MAO) activity in vitro and was higher in young than in older animals throughout the study (day 1, 54.8 ± 4.2 vs 25.1 ± 5.1%; P < 0.02). In young rats excretion of (IMAO) was significantly higher during the last 3 days of the study than on day 1 (P < 0.05). In older animals urinary (IMAO) showed a tendency to increase at the end of the study. 5. Isolation stress caused by housing rats in metabolic cages results in different behavioral and metabolic responses in young and older animals. Young animals exhibit a lower locomotor and analgesic response and excrete lower amounts of NE and higher IMAO activity in the urine than older rats. The metabolic and behavioral responses to isolation stress are highly dependent on the age of the animals tested. These results should be taken into consideration when designing experiments requiring the use of metabolic cages.