Title

Lower circulating C1q/TNF-Related Protein-3 (CTRP3) Levels are associated with obesity: A cross-sectional study

Document Type

Journal Article

Publication Date

7-29-2015

Journal

PLoS ONE

Volume

10

Issue

7

DOI

10.1371/journal.pone.0133955

Abstract

© 2015 Wolf et al. Purpose C1q/TNF-related protein-3 (CTRP3) is a novel adipokine that lowers blood glucose levels, reduces liver triglyceride synthesis, and is protective against hepatic steatosis in dietinduced obese mouse models. We hypothesized that higher circulating serum levels of CTRP3 would be associated with a lean body mass index (BMI) and a more favorable metabolic profile in humans. The aim of this study was to investigate CTRP3 levels in lean individuals compared to obese individuals. Methods This was a cross-sectional study of obese (n=44) and lean control patients (n=60). Fasting metabolic parameters were measured in all patients and serum CTRP3 levels were measured by ELISA. Results BMI of the lean group was 21.9 ± 0.2 kg/m2 and obese group was 45.2 ± 1.1 kg/m2. We found significantly lower circulating levels of CTRP3 in obese individuals (405 ± 8.3 vs. 436 ± 6.7ng/mL, p=0.004) compared to the lean group. Serum CTRP3 levels were inversely correlated with BMI (p=0.001), and triglycerides (p<0.001), and significantly associated with gender (p<0.01), ethnicity (p=0.05), HDL-cholesterol (p<0.01), and adiponectin (p<0.01). We found BMI (p<0.01), gender (p<0.01), and ethnicity (p<0.05) to be significant predictors of CTRP3 levels when controlling for age in multiple regression analysis. Conclusions CTRP3 is a beneficial adipokine whose circulating levels are significantly lower in obese individuals. Obesity causes dysregulation in adipokine production, including the down-regulation of CTRP3. Lower CTRP3 levels may contribute to the pathophysiology of metabolic disorders associated with obesity. Optimizing CTRP3 levels through novel therapies may improve obesity and its comorbidities.

This document is currently not available here.

Share

COinS