Document Type

Journal Article

Publication Date



Nephrology Dialysis Transplantation




Background Identification of acute kidney injury (AKI) can be challenging in patients with underlying chronic disease, and biomarkers often perform poorly in this population. In this study we examined the performance characteristics of the novel biomarker panel of urinary tissue inhibitor of metalloproteinases-2 (TIMP2) and insulin-like growth factor-binding protein 7 ([IGFBP7]) in patients with a variety of comorbid conditions.

Methods We analyzed data from two multicenter studies of critically ill patients in which [TIMP2]•[IGFBP7] was validated for prediction of Kidney Disease: Improving Global Outcomes (KDIGO) Stage 2 or 3 AKI within 12 h. We constructed receiver operating characteristic (ROC) curves for AKI prediction both overall and by comorbid conditions common among patients with AKI, including diabetes mellitus, congestive heart failure (CHF) and chronic kidney disease (CKD).

Results In the overall cohort of 1131 patients, 139 (12.3%) developed KDIGO Stage 2 or 3 AKI. [TIMP2]•[IGFBP7] was significantly higher in AKI versus non-AKI patients, both overall and within each comorbidity subgroup. The AUC for [TIMP2]•[IGFBP7] in predicting AKI was 0.81 overall. Higher AUC was noted in patients with versus without CHF (0.89 versus 0.79; P = 0.026) and CKD (0.91 versus 0.80; P = 0.024).

Conclusions We observed no significant impairment in the performance of cell cycle arrest biomarkers due to the presence of chronic comorbid conditions.


Reproduced with permission of Oxford University Press. Nephrology Dialysis Transplantation.

Creative Commons License

Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial 4.0 License

Peer Reviewed


Open Access




To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.