Relationship between Arterial Stiffness and Subsequent Cardiac Structure and Function in Young Adults with Youth-Onset Type 2 Diabetes: Results from the TODAY Study

Document Type

Journal Article

Publication Date



Journal of the American Society of Echocardiography




Arterial stiffness; Cardiac structure; Diastolic function; Type 2 diabetes


Background: Higher arterial stiffness may contribute to future alterations in left ventricular systolic and diastolic function. We tested this hypothesis in individuals with youth-onset type 2 diabetes from the Treatment Options for Type 2 Diabetes in Adolescents and Youth (TODAY) study. Methods: Arterial stiffness (pulse wave velocity [carotid-femoral, femoral-foot, and carotid-radial], augmentation index, brachial distensibility) was measured in 388 participants with type 2 diabetes (mean age, 21 years; diabetes duration, 7.7 ± 1.5 years). To reflect overall (composite) vascular stiffness, the five arterial stiffness measures were aggregated. An echocardiogram was performed in the same cohort 2 years later. Linear regression models assessed whether composite arterial stiffness was associated with left ventricular mass index or systolic and diastolic function, independent of age, sex, race/ethnicity, current cigarette smoking, and long-term exposure (time-weighted mean values over 9.1 years) of hemoglobin A1c, blood pressure, and body mass index. Interactions among arterial stiffness and time-weighted mean hemoglobin A1c, blood pressure, and body mass were also examined. Results: After adjustment, arterial stiffness remained significantly associated with left ventricular mass index and diastolic function measured by mitral valve E/Em, despite attenuation by time-weighted mean body mass index. A significant interaction revealed a greater adverse effect of composite arterial stiffness on mitral valve E/Em among participants with higher levels of blood pressure over time. Arterial stiffness was unrelated to left ventricular systolic function. Conclusions: The association of higher arterial stiffness with future left ventricular diastolic dysfunction suggests the path to future heart failure may begin early in life in this setting of youth-onset type 2 diabetes. Trial Registration: NCT00081328.


Biostatistics and Bioinformatics