Document Type
Journal Article
Publication Date
4-30-2014
Journal
Epidemiology
Volume
Volume 4
Inclusive Pages
Article number 155
Abstract
Background: A simple sensitivity analysis technique was developed to assess the impact of misclassification and verify observed prevalence differences between distinct populations.
Methods: The prevalence of self-reported comorbid diseases in 4,331 women with surgically-diagnosed endometriosis was compared to published clinical and population-based prevalence estimates. Disease prevalence misclassification was assessed by assuming over-reporting in the study sample and under-reporting in the general (comparison) population. Over- and under-reporting by 10%, 25%, 50%, 75%, and 90% was used to create a 5×5 table for each disease. The new prevalences represented by each table cell were compared by p-values, prevalence odds ratios, and 95% confidence intervals.
Results: Three misclassification patterns were observed: 1) differences remained significant except at high degrees (>50%) of misclassification; 2) minimal (10%) misclassification negated any observed difference; and 3) with some (25-50%) misclassification, the difference disappeared, and the direction of significance changed at higher levels (>50%).
Conclusions: This sensitivity analysis enabled us to verify observed prevalence differences. This useful, simple approach is for comparing prevalence estimates between distinct populations.
Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.
APA Citation
Sinaii, N., Cleary, S.D., Stratton, P. (2014). Assessing the impact of misclassification when comparing prevalence data: A novel sensitivity analysis approach. Epidemiology, 4:155.
Open Access
1
Comments
Reproduced with permission of OMICS Publishing Group, Epidemiology.