Document Type
Journal Article
Publication Date
2016
Journal
Cell and Bioscience
Volume
6
DOI
10.1186/s13578-016-0071-0
Abstract
Breast cancer is the most common cancer among American women, except for skin cancers. About 12 % women in the United States will develop invasive breast cancer during their lifetime. Currently one of the most accepted model/theories is that ductal breast cancer (most common type of breast cancer) follows a linear progression: from normal breast epithelial cells to ductal hyperplasia to atypical ductal hyperplasia (ADH) to ductal carcinoma in situ (DCIS), and finally to invasive ductal carcinoma (IDC). Distinguishing pure ADH diagnosis from DCIS and/or IDC on mammography, and even combined with follow-up core needle biopsy (CNB) is still a challenge. Therefore subsequent surgical excision cannot be avoided to make a definitive diagnosis. MicroRNAs (miRNAs) are a highly abundant class of endogenous non-coding RNAs, which contribute to cancer initiation and progression, and are differentially expressed between normal and cancer tissues. They can function as either tumor suppressors or oncogenes. With accumulating evidence of the role of miRNAs in breast cancer progression, including our own studies, we sought to summarize the nature of early breast lesions and the potential use of miRNA molecules as biomarkers in early breast cancer detection. In particular, miRNA biomarkers may potentially serve as a companion tool following mammography screening and CNB. In the long-term, a better understanding of the molecular mechanisms underlying the miRNA signatures associated with breast cancer development could potentially result in the development of novel strategies for disease prevention and therapy.
Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.
APA Citation
epub ahead of print
Peer Reviewed
1
Open Access
1
Comments
Reproduced with permission of BioMed Central Ltd. Cell and Bioscience