Analysis of early dengue virus infection in mice as modulated by Aedes aegypti probing

Document Type

Journal Article

Publication Date



Journal of Virology








Dengue virus (DENV), the etiologic agent of dengue fever, is transmitted during probing of human skin by infected-mosquito bite. The expectorated viral inoculum also contains an assortment of mosquito salivary proteins that have been shown to modulate host hemostasis and innate immune responses. To examine the potential role of mosquito probing in DENV establishment within the vertebrate host, we inoculated mice intradermally with DENV serotype 2 strain 1232 at sites where Aedes aegypti had or had not probed immediately prior. We assayed these sites 3 h postinoculation with transcript arrays for the Toll-like receptor (TLR), RIG-I-like receptor, and NOD-like receptor signaling pathways of the innate immune system. We then chose TLR7, transcription factor p65 (RelA), gamma interferon (IFN-γ), and IFN-γ-inducible protein 10 (IP-10) from the arrays for further investigation and assayed these transcripts at 10 min, 3 h, and 6 h postinoculation. The transcripts for TLR7, RelA, IFN-γ, and IP-10 were significantly downregulated between 2- and 3-fold in the group subjected to mosquito probing relative to the virusonly inoculation group at 3 h postinoculation. A reduction in these transcripts could indicate reduced DENV recognition and antigen presentation and diminished inhibition of viral replication and spread. Further, mosquito probing resulted in viremia titers significantly higher than those in mice that did not receive probing. A. aegypti probing has a significant effect on the innate immune response to DENV infection and generates an early immune environment more permissive to the establishment of infection. © 2014, American Society for Microbiology.