Procedures to select digital sensing technologies for passive data collection with children and their caregivers: Qualitative cultural assessment in South Africa and Nepal

Document Type

Journal Article

Publication Date



Journal of Medical Internet Research








Child development; Confidentiality; Culturally competent care; Developing countries; Global health; Mental health; Mobile phones; Wireless technology


© Brandon A Kohrt, Sauharda Rai, Khanya Vilakazi, Kiran Thapa, Anvita Bhardwaj, Alastair van Heerden. Background: Populations in low-resource settings with high childhood morbidity and mortality increasingly are being selected as beneficiaries for interventions using passive sensing data collection through digital technologies. However, these populations often have limited familiarity with the processes and implications of passive data collection. Therefore, methods are needed to identify cultural norms and family preferences influencing the uptake of new technologies. Objective: Before introducing a new device or a passive data collection approach, it is important to determine what will be culturally acceptable and feasible. The objective of this study was to develop a systematic approach to determine acceptability and perceived utility of potential passive data collection technologies to inform selection and piloting of a device. To achieve this, we developed the Qualitative Cultural Assessment of Passive Data collection Technology (QualCAPDT). This approach is built upon structured elicitation tasks used in cultural anthropology. Methods: We piloted QualCAPDT using focus group discussions (FGDs), video demonstrations of simulated technology use, attribute rating with anchoring vignettes, and card ranking procedures. The procedure was used to select passive sensing technologies to evaluate child development and caregiver mental health in KwaZulu-Natal, South Africa, and Kathmandu, Nepal. Videos were produced in South Africa and Nepal to demonstrate the technologies and their potential local application. Structured elicitation tasks were administered in FGDs after showing the videos. Using QualCAPDT, we evaluated the following 5 technologies: home-based video recording, mobile device capture of audio, a wearable time-lapse camera attached to the child, proximity detection through a wearable passive Bluetooth beacon attached to the child, and an indoor environmental sensor measuring air quality. Results: In South Africa, 38 community health workers, health organization leaders, and caregivers participated in interviews and FGDs with structured elicitation tasks. We refined the procedure after South Africa to make the process more accessible for low-literacy populations in Nepal. In addition, the refined procedure reduced misconceptions about the tools being evaluated. In Nepal, 69 community health workers and caregivers participated in a refined QualCAPDT. In both countries, the child’s wearable time-lapse camera achieved many of the target attributes. Participants in Nepal also highly ranked a home-based environmental sensor and a proximity beacon worn by the child. Conclusions: The QualCAPDT procedure can be used to identify community norms and preferences to facilitate the selection of potential passive data collection strategies and devices. QualCAPDT is an important first step before selecting devices and piloting passive data collection in a community. It is especially important for work with caregivers and young children for whom cultural beliefs and shared family environments strongly determine behavior and potential uptake of new technology.

This document is currently not available here.