Effect of glucocorticoids on renal dopamine production

Document Type

Journal Article

Publication Date

4-16-1999

Journal

European Journal of Pharmacology

Volume

370

Issue

3

DOI

10.1016/S0014-2999(99)00121-1

Keywords

DOPA (dihydroxyphenylalanine); Dopamine; Glucocorticoid; Natriuresis; Renal function

Abstract

This study assess the effects of glucocorticoids on dopamine excretion and evaluates the participation of renal dopamine in the effects of glucocorticoids on renal function and Na+ excretion. Dexamethasone (i.m.; 0.5 mg/kg) was administered to male Wistar rats on day 2 or on days 2 and 5. Daily urinary excretions of Na+, dihydroxyphenylalanine (DOPA), dopamine and dihydroxyphenylacetic acid were determined from day 1 to day 7. Renal function was evaluated 8 h after dexamethasone administration in a separate group. The first dose of dexamethasone increased about 100% diuresis and natriuresis, increased urinary DOPA and renal plasma flow, and did not affect urinary dopamine or the other parameters evaluated. These effects were not affected by previous administration of haloperidol. The second dexamethasone dose increased about 200% diuresis and natriuresis, increased urinary dopamine, DOPA, dihydroxyphenylacetic acid, U(osm)xV and both glomerular filtration rate and renal plasma flow. Carbidopa administered before the second dexamethasone dose blunted both the diuretic and the natriuretic response whereas haloperidol abolished or blunted all the effects of the second dexamethasone dose. These results show that modifications in renal dopamine production produced by corticoids may contribute to the effects of these hormones on Na+ balance and diuresis and suggest that regardless the factor that promotes an increase in renal perfusion and glomerular filtration rate during long term administration of glucocorticoids, a dopaminergic mechanism is actively involved in the maintenance of these hemodynamic changes. Copyright (C) 1999 Elsevier Science B.V.

Share

COinS