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Disruption of neonatal 
cardiomyocyte physiology 
following exposure to bisphenol-a
Manelle Ramadan1,2, Meredith Sherman1, Rafael Jaimes III1,2, Ashika Chaluvadi1,  
Luther Swift1,2 & Nikki Gillum Posnack1,2,3

Bisphenol chemicals are commonly used in the manufacturing of polycarbonate plastics, polyvinyl 
chloride plastics, resins, and thermal printing applications. Humans are inadvertently exposed to 
bisphenols through contact with consumer products and/or medical devices. Recent reports have shown 
a link between bisphenol-a (BPA) exposure and adverse cardiovascular outcomes; although these 
studies have been limited to adult subjects and models. Since cardiac physiology differs significantly 
between the developing and adult heart, we aimed to assess the impact of BPA exposure on cardiac 
function, using a neonatal cardiomyocyte model. Neonatal rat ventricular myocytes were monitored to 
assess cell viability, spontaneous beating rate, beat rate variability, and calcium-handling parameters 
in the presence of control or bisphenol-supplemented media. A range of doses were tested to mimic 
environmental exposure (10−9–10−8M), maximum clinical exposure (10−5M), and supraphysiological 
exposure levels (10−4M). Acute BPA exposure altered cardiomyocyte functionality, resulting in a slowed 
spontaneous beating rate and increased beat rate variability. BPA exposure also impaired intracellular 
calcium handling, resulting in diminished calcium transient amplitudes, prolonged calcium transient 
upstroke and duration time. Alterations in calcium handling also increased the propensity for alternans 
and skipped beats. Notably, the effect of BPA-treatment on calcium handling was partially reversible. 
Our data suggest that acute BPA exposure could precipitate secondary adverse effects on contractile 
performance and/or electrical alternans, both of which are dependent on intracellular calcium 
homeostasis.

Bisphenol-a (BPA) is a high volume production chemical – with more than 8 million pounds produced worldwide 
each year. BPA is commonly used in the manufacturing of polycarbonate plastics, polyvinyl chloride plastics, res-
ins, and thermal printing applications1. Humans are unintentionally exposed to bisphenols through contact with 
consumer products and/or medical devices, which leach BPA under normal conditions of use. Consequently, 
widespread and continuous exposure to bisphenols can occur through dietary intake, inhalation, dermal or 
intravenous exposure. Indeed, biomonitoring studies suggest that >90% of the general population is exposed 
to detectable levels of BPA through environmental exposure1,2. In comparison, intensive care patients are often 
exposed to extraordinarily high BPA concentrations due to medical procedures that employ BPA-containing plas-
tic products (i.e., nasogastric tube, cardiopulmonary bypass or extracorporeal membrane oxygenation circuits, 
intravenous tubing, catheters)3–5. Once inside the body, BPA is biologically active – exerting widespread effects 
through endocrine disruption, genomic and non-genomic mechanisms6–8.

Recent studies have shown that BPA exposure negatively impacts cardiac electrophysiology and 
excitation-contraction coupling, using adult rodent models9–12. Our laboratory previously reported a linear 
dose-response relationship between acute BPA exposure (15 min) and impaired electrical and mechanical func-
tion, using excised Langendorff-perfused hearts from adult Sprague-Dawley rats9,10. Specifically, increasing BPA 
concentrations resulted in prolonged atrioventricular conduction time, slowed epicardial conduction velocity, 
decreased left ventricular developed pressure and reduced cardiac contractility (10−9–10−4M)9,10. Similarly, Pant 
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et al. showed that increasing concentrations of BPA causes a negative inotropic and chronotropic effect on adult 
atrial preparations11. BPA exposure has also been linked to an increase in the incidence of arrhythmias and spon-
taneous aftercontractions in isolated adult cardiomyocytes, which may be attributed to calcium leak from the sar-
coplasmic reticulum (SR)12. The effects of BPA on individual processes of calcium handling (i.e., L-type calcium 
current, SR calcium uptake, calcium spark frequency) were previously shown to have a monotonic dose response 
relationship in adult cells13.

Epidemiological studies have also shown a correlation between BPA exposure and cardiovascular pathologies, 
including an increased risk of hypertension, angina, myocardial infarction and reduced heart rate variability14–23. 
These associations are worrisome to the general public – but even more concerning for vulnerable populations 
who are exposed to exceedingly high BPA concentrations (i.e., intensive care patients, industrial workers)3–5,24–26 
or those who are developmentally susceptible to chemical exposures (i.e., developing fetus, children)27. Indeed, 
young children with an underdeveloped metabolic system can be exposed to chemical contaminants for longer 
periods of time, due to slowed chemical processing and elimination. As examples, biomonitoring studies have 
reported maximal BPA concentrations of 0.1–0.4 × 10−5M in neonatal intensive care patients3,4. Taken together, 
neonatal and pediatric intensive care patients are at the greatest risk for bisphenol exposure – yet, the impact of 
BPA on pediatric cardiac function is unknown.

Previous studies have highlighted the link between BPA and altered cardiac functionality; although, to date, 
these studies have been limited to adult models. Yet, significant developmental differences exist between the 
immature and adult heart, including: ion channel expression and localization, development of the t-tubule sys-
tem, and maturation of the excitation-contraction machinery. Developmental differences in the calcium-handling 
machinery of pediatric hearts could precipitate an exaggerated response to BPA chemical exposure. Based on our 
previously published data9,10, we sought to further examine the linear dose response relationship between BPA 
and impaired cardiac function. Specifically, we investigated the sensitivity of neonatal cardiomyocytes to BPA 
exposure by monitoring automaticity, excitability, intracellular calcium handling – and examined the reversibility 
of such effects.

Results
Acute BPA exposure does not negatively influence neonatal cardiomyocyte viability. Patient 
contact with BPA-containing medical products can result in urinary concentrations that reach micromolar  
levels3–5,28,29. In vitro exposure to similar concentrations has been shown to induce cytotoxicity in multiple cell 
types, including pancreatic islet cells, monocytes and hepatocytes30–32. Such an impact on cardiomyocyte viability 
would also effect cell structure, metabolism and/or intracellular ATP production – and impede basal cardiomy-
ocyte functionality. With this in mind, the effect of BPA treatment on cardiomyocyte viability was assessed prior 
to performing secondary phenotypic testing. Cardiac cells were loaded with either a metabolic indicator dye or 
dual-labeled to measure cell membrane integrity (Fig. 1A). No significant difference in cell viability was observed 
between control and BPA-supplemented cardiomyocytes (30 min) using either assay, even at maximal concentra-
tions (10−5–10−4M, Fig. 1B).

Acute BPA exposure reduces cardiomyocyte automaticity and excitability. Confluent neonatal 
cardiomyocyte monolayers undergo phase synchronization and exhibit coordinated spontaneous beating or auto-
maticity in culture. The intrinsic spontaneous beating rate (SBR) of cardiomyocytes is determined by a balance 
between inward and outward currents33–35 and calcium oscillations (e.g., “calcium clock”)36. Therefore, altera-
tions in SBR can serve as a sensitive, yet cumulative index, of cardiac health and excitability. Previous studies 
have shown a causal relationship between BPA dose and slowed SBR, in adult rat atrial preparations11 and iso-
lated adult rat whole hearts10. Acute BPA exposure (15 min) reduced SBR in neonatal cardiomyocyte monolayers, 
albeit only at high concentrations (Fig. 2B). The intrinsic SBR decreased by 50.0% in 10−5M and 64.3% in 10−4M 
BPA-treated samples, compared with control. We also observed a decrease in cardiomyocyte excitability in the 
presence of BPA (Fig. 2D). The threshold voltage required to externally pace cardiac cells increased to 14.3 ± 2.3 V 
in 10−8M, 14.6 ± 3.2 V in 10−5M, and 41.3 ± 10.2 in 10−4M BPA-treated samples compared with 10.9 ± 0.9 V 
control. Such an effect on electrical excitability could be related to the antagonistic effect of BPA on voltage gated 
sodium currents37,38, modifications in calcium handling, and/or alterations in cell membrane resistance between 
neighboring cells.

Acute BPA exposure increases beat rate variability. Isolated cardiomyocytes exhibit beat rate vari-
ability (BRV) that reflects intrinsic cardiac regulatory mechanisms, including ion channel current, intracellular 
calcium handling, and cell coupling34,39–42. Similar to SBR measurements, BRV has been used as a cumulative 
index to assess cardiac safety, which can be influenced by a variety of proteins involved in excitation-contraction 
coupling43. Greater variance in the interbeat interval is commonly observed in poorly coupled cardiac networks 
or in the presence of drugs that hinder calcium handling34. Neonatal cardiomyocyte monolayers exhibited a reg-
ular rhythmic beating pattern under control conditions (Fig. 2A). In comparison, acute BPA exposure (15 min) 
increased the BRV by +179% and +189% in 10−8M and 10−5M BPA-treated samples, respectively (Fig. 2A,C). 
BRV also increased at the highest BPA concentration tested (10−4M), although the mean value was influenced by 
an exaggerated decrease in SBR (Fig. 2B) which resulted in complete cessation of automaticity in 57% of samples 
(data not shown).

Acute BPA exposure alters intracellular calcium handling. Calcium is a vital regulator of cardiac 
automaticity, beat rate variability, contraction and relaxation33,44,45. We previously reported that BPA exposure 
can alter calcium handling in adult rat hearts, resulting in impaired mechanical function and decreased car-
diac contractility9. Although, structural differences (i.e., rudimentary t-tubules and calcium release units)46 lead 
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to variations in the calcium handling of immature cardiomyocytes (e.g., less pronounced calcium-induced cal-
cium release) compared with adult cells. Calcium transients were recorded from neonatal cardiomyocytes loaded 
with Fluo-4AM, which exhibits an increase in fluorescence upon binding to calcium ions during systole (Fig. 3). 
Neonatal cardiomyocytes were externally paced, at room temperature, to negate rate dependent differences in 
calcium kinetics. Figure 3 shows a decrease in the peak CaT amplitude across all BPA doses tested, ranging from 
18.12 to 25.45% compared with control. Such a reduction in CaT amplitude suggests a decrease in SR calcium 
loading, as previously described47,48. Importantly, the latter was not attributed to nonspecific fluorescence decay, 
since calcium transient amplitudes decreased by 0.9 ± 0.7% during repeated imaging under control conditions 
(basal vs 20 min recording).

Pace-induced CaT were recorded, normalized (Fig. 4A), and temporal attributes of calcium handling were 
quantified. BPA-treatment slowed the time to peak (90% upstroke time), and CaT upstroke velocity beginning at 
low nanomolar concentrations (Fig. 4). The upstroke time increased from 65.1 ± 2.9 msec in control samples to 
83.1 + 7.7 msec in 10−9M BPA and 164.7 + 28 msec in 10−4M BPA-treated samples (Fig. 4A–C). We also observed 
modest prolongation of CaD30 (duration from activation to 30% relaxation time) from 281.6 ± 11.1 msec in con-
trol samples to 317 ± 29.5 msec in 10−9M BPA and 415.2 ± 27.7 msec in 10−4M BPA-treated samples (Fig. 4D). 
Taken together, these results suggest that calcium release and reuptake to the sarcoplasmic reticulum can be 
hindered in BPA-treated samples.

BPA increases the incidence of calcium transient alternans and alters restitution. Cardiac cells 
display mechanical restitution, whereby a period of time is required after each contraction before another con-
traction of the sample amplitude can be elicited45. Consequently, underlying changes in cardiac refractoriness 
may go unnoticed at slower beating rates, but become identifiable as the beating frequency is increased. Neonatal 
cardiomyocytes were subjected to pacing frequencies that increased stepwise (Fig. 5A), and cell refractoriness 
was measured by the incidence and magnitude of CaT alternans. An alternans ratio was calculated to gauge 
the severity of alternans, or alternating large and small amplitudes [1-(small CaT/large CaT)]49,50. At the fastest 
pacing rate tested (3 Hz), acute BPA treatment increased the magnitude of beat-to-beat CaT alternans across all 
concentrations tested (Fig. 5B). Whereas substantial lengthening of refractoriness resulted in skipped beats at 
higher BPA concentrations (Fig. 5C,D). Acute BPA exposure decreased the maximum calcium cycling frequency 
to 1.8 Hz in 10−5M BPA and 0.6 Hz in 10−4M BPA, compared with 2.7 Hz in control samples (Fig. 5A,C). Cardiac 

Figure 1. Acute BPA exposure does not impair cardiomyocyte viability. Cardiac cell viability was assessed 
following 30-min exposure to vehicle control or increasing concentrations of BPA. (A) Confluent monolayer 
of neonatal cardiomyocytes labeled with calcein-AM (white) and ethidium homodimer-1 (blue) to assess 
cell viability via membrane integrity (100 μm scale). (B) Cell viability measured via membrane integrity (left, 
as described above) and via metabolic capacity (right, resazurin-based assay). au = arbitrary units, ns = not 
significantly different, *p ≤ 0.05, n = 4.
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refractoriness was evident at pacing rates >1 Hz, where the 1:1 capture rate decreased due to skipped or dropped 
beats at increasing BPA concentrations (Fig. 5D, 2 Hz pacing rate). These data suggest that BPA decreases the 
threshold for pacing-induced alternans and lengthens the refractoriness of calcium release. The latter may be 
attributed to changes in SR calcium release and/or calcium reuptake51, which leads to calcium instabilities.

BPA-induced alterations in calcium handling are partially reversible. Human pharmacokinetic 
studies suggest that BPA is rapidly metabolized, with a half-life of a few hours52–54. With this in mind, we aimed 
to determine whether the effects of BPA on calcium handling were reversible. CaT were recorded from neonatal 
cardiomyocytes under control conditions, following acute 15 min exposure to maximal concentrations of BPA 
(10−4M) and again after 1 hr wash out (Fig. 6). CaT amplitude decreased by −29.2% and CaT duration increased 
by +62.9% after exposure to 10−4M BPA, compared with control. Following wash out, calcium handling param-
eters partially recovered, but remained significantly different from baseline control recordings. CaT amplitude 
remained −13.4% lower (Fig. 6A) and CaT duration remained +23.8% longer (Fig. 6B) in wash out samples, 
compared with baseline control recordings.

Discussion
Significant developmental differences exist between the immature and adult heart, including: ion channel 
expression and localization, development of the t-tubule system, and maturation of the excitation-contraction 
machinery. Calcium handling also matures dramatically during development – calcium oscillations first serve a 
pacemaker function (“calcium clock”)36,55, whereas later, action potential-driven calcium-induced calcium release 
becomes essential for synchronized muscle contraction46. Indeed, inefficient excitation-contraction coupling is 
observed in myocytes with rudimentary t-tubules and reduced coupling between L-type calcium channels and 
ryanodine receptors46. Such an immature phenotype can increase the propensity for arrhythmias, reduce calcium 
transient amplitude, and diminish contractile force56. These unique characteristics can impede the extrapolation 
of BPA cardiotoxicity data between adult9,10,12,57,58 and pediatric experimental studies.

Figure 2. Acute BPA exposure decreases the spontaneous beating rate and cardiac excitability, and increases 
beat rate variability. Cardiomyocyte spontaneous beating rate was monitored following 15-min exposure 
to either vehicle control or BPA-supplemented media. (A) Representative example traces of neonatal 
cardiomyocytes under control conditions, or media supplemented with 10−8M BPA. (B,C) Mean spontaneous 
beating frequency (Hz) and beat rate variability measurements (SD of interbeat interval). (D) Minimum 
threshold voltage required for excitation via field stimulation. AUF = arbitrary units of fluorescence, F1 = peak 
fluorescence amplitude, F0 = baseline fluorescence. *p ≤ 0.05, n ≥ 4.
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Although pediatric populations may be more vulnerable to endocrine disrupting chemicals (“window of vul-
nerability”27,59,60) – the effect of BPA exposure on immature heart cells is unknown. To address this knowledge 
gap, we examined the impact of BPA exposure on excitation-contraction coupling in neonatal cardiomyocytes. 
The current study investigated a wide range of BPA doses that mimic environmental, clinical and supraphysiologi-
cal exposure levels (10−9–10−4M). In the presented study, acute (15 min) BPA exposure slowed the SBR, increased 
BRV, and diminished cardiac cell excitability at nanomolar concentrations. We also detected significant, although 
modest, changes in calcium transient kinetics at slow pacing rates – which were coupled with an increased pro-
pensity for calcium transient alternans and prolonged refractoriness at faster pacing rates. Importantly, the 
observed effects on calcium handling were at least partially reversible. The presented study supports our previous 
finding that BPA exposure can impact cardiac electrical and mechanical function9,10, and highlights the impor-
tance of addressing pediatric heart vulnerability to endocrine-disrupting chemicals.

Spontaneous beating rate, beat rate variability and excitability. Although isolated adult cardi-
omyocytes are quiescent, neonatal cardiomyocytes exhibit spontaneous synchronized beating that can serve as 
a sensitive and cumulative index of cardiac health and excitability. In the presented study, we observed slowing 
of the SBR and an increase in BRV following BPA-treatment of neonatal myocytes. In vivo measurements of 
heart rate variability can be influenced by extracardiac factors (i.e., autonomic, endocrine), whereas BRV in the 
neonatal myocyte model reflects the intrinsic properties of cardiac tissue (i.e., ion channel current, intracellular 
calcium handling, gap junction intercellular communication)34,42. Indeed, alterations in the BRV of isolated car-
diomyocytes has previously been reported in poorly coupled cell networks, in the presence of drugs that hinder 
calcium handling, or following funny current inhibition34,41. Whereas slowing of the SBR may be attributed to 

Figure 3. Acute BPA exposure reduces calcium transient amplitudes. (A) Representative CaT recorded from 
neonatal cardiomyocytes under control conditions, and following supplementation with 10−8M BPA. Cardiac 
monolayers were paced at 0.2 Hz using field stimulation. (B) Representative images show the fluorescence 
intensity of Fluo-4AM corresponding to diastolic (baseline) and systolic intracellular calcium (peak). (C) Mean 
CaT amplitude measured by fluorescent calcium indicator dye (Fluo4-AM), F1 = peak fluorescence amplitude, 
F0 = baseline fluorescence, *p ≤ 0.05, n ≥ 15.
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a disturbance in spontaneous calcium oscillations (e.g., calcium leak from SR)61, and outward calcium/inward 
sodium flux via the sodium-calcium exchanger46,62,63. This finding concurs with published studies noting a neg-
ative chronotropic response to BPA-treatment in isolated adult atrial preparations11 and excised whole hearts10. 
We also observed a decrease in cell excitability following BPA-treatment, which may be related to the antagonistic 
effect of BPA on voltage gated sodium currents37,38, activation of potassium channels64, modifications in calcium 
handling, and/or alterations in cell membrane resistance between neighboring cells. Indeed, BPA-treatment has 
been shown to influence gap junction functionality65–67, although these studies have not yet been confirmed in a 
cardiac model.

Calcium handling, calcium transient alternans and refractoriness. Alterations in calcium cycling 
will also influence excitation-contraction coupling – the process linking electrical excitation to contraction. 
Liang, et al. previously reported that BPA exposure inhibited L-type calcium channel current and modified the 
calcium release/reuptake kinetics of the SR in adult myocytes13. The authors noted an increase in the propensity 
for spontaneous aftercontractions in adult cardiac cells and arrhythmias in adult animals, which was attributed 
to calcium leak from the SR12,68. In the current study, we observed modest slowing of calcium cycling kinetics 
(upstroke, upstroke velocity, CaD30) that coincided with an increased propensity for alternans and skipped beats. 
Calcium transient alternans can result from an imbalance between calcium release (e.g., ryanodine receptor69) 
and reuptake (e.g. SR calcium ATPase, SERCA), and/or an increase in ryanodine receptor refractoriness70, which 
leads to calcium instabilities. Importantly, intracellular calcium alternans have been linked to action potential 
alternans, t-wave alternans and re-entrant arrhythmias71–73. Additional studies are needed to ascertain whether 
BPA exposure increases the propensity for electrical alternans.

In the present study, we also observed a decrease in the CaT amplitude of BPA-treated samples, indicating a 
reduction in the amount of calcium released from the SR with each contraction. Given the relationship between 
intracellular calcium concentration, myofilament sensitivity, and contractile force – diminished calcium release 
would explain the negative inotropic response observed in atrial and whole heart preparations9,11. Diminished 
CaT amplitudes are also observed in situations of reduced SERCA activity and/or diminished ryanodine receptor 
synchronization74,75. Given the immediate effects of BPA, post-translational modifications of key calcium han-
dling proteins (e.g. phospholamban, ryanodine) and/or interference with ion channel current (e.g. L-type calcium 
channel) may explain our observations.

Figure 4. Acute BPA exposure slows intracellular calcium handling. (A) CaT (amplitude normalized) recorded 
from neonatal cardiomyocyte monolayer under control conditions, and after supplementation with 10−8M BPA. 
(B–E) CaT parameters measured under external pacing, including (B) upstroke velocity, (C) upstroke time, (D) 
30% CaT duration (CaD30) and (E) 80% CaT duration (CaD80). s = seconds, ns = not significantly different, 
AUF = arbitrary units fluorescence, *p ≤ 0.05, n ≥ 10.
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Reversibility of cardiac effects. In the presented study, we showed that the effects of high-dose BPA expo-
sure (10−4M; acute 15-min) on calcium handling are partially reversible. This finding coincides with previously 
published studies showing that the effects of BPA on ion channel functionality are likely reversible – and presents 
important insight for human risk assessment. Deutschmann, et al. showed that BPA (10−5–10−4M) is a potent 
blocker of voltage gated calcium channels, but noted that current inhibition was almost fully reversible in car-
diac myocytes76. Similarly, Wang, et al. noted the rapid inhibitory effects of BPA on voltage-gated sodium chan-
nels in neurons; this inhibitor effect was concentration-dependent (2–12 × 10−5M) and mostly reversible after a 
short wash out period38. BPA treatment has also been shown to inhibit gap junction intercellular communication 
and the outward current of connexin hemichannels, although the reversibility of these effects may be cell or 
connexin-isoform specific (connexin-43 vs connexin-46)65–67. Finally, Asano, et al. reported that BPA-treatment 
(10−6–10−4M) reversibly activates Maxi-K channels in coronary smooth muscle cells64. It is unclear whether sim-
ilar results translate to the human myocardium65,66.

Limitations. The scope of the current study was limited to the effect of acute (15 min) BPA exposure on 
neonatal rat cardiomyocytes. We hypothesize that the quick, partially-reversible action of BPA is likely due 
to ion channel interactions, as described in other cell types, and/or post-translational modifications of key 
calcium-handling proteins. Additional studies are needed to fully interrogate the underlying mechanisms of 
bisphenol chemicals, which are likely multifactorial and may differ entirely in instances of longer-term exposure. 
Our previous findings reported a linear dose-response relationship between BPA and whole heart physiology; 
therefore, our current study included a range of BPA concentrations that covered environmental (10−9–10−8M), 
maximal clinical (10−5M) and supraphysiological exposure levels (10−4M). The latter allowed our group to show 
that phenotypic changes were not solely attributed to cardiomyocyte death and were partially reversible, even at 
extraordinarily high concentrations. Nevertheless, we cannot rule out alternative cardiac outcomes at different 

Figure 5. Acute BPA exposure promotes calcium transient alternans and impairs the rate of calcium cycling. 
(A) Pace-induced CaT recorded at multiple pacing frequencies (1–3 Hz) under control conditions, or following 
BPA-exposure. Representative example depicts CaT alternans with alternating long (L) and short (S) duration 
times following exposure to 10−8M (inset). Higher BPA concentrations (10−5M) slow calcium cycling, resulting 
in loss of capture at faster pacing rates. (B) Magnitude of CaT alternans expressed as a ratio [1-(CaT small/CaT 
large)]. (C) Maximum calcium cycling frequency. (D) Loss of 1:1 capture (2 Hz external pacing frequency). 
*p ≤ 0.05, n ≥ 8.
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exposure levels, since BPA may exert a non-monotonic dose-response77,78. Finally, the current study was limited 
to neonatal cell preparations from newborn rats (1 day old, male and female mixed litter), which prevented the 
examination of sex-specific cardiac effects in response to BPA exposure. Since BPA is estrogenic12, additional 
studies are warranted to determine whether the observed effects on cardiac physiology are exacerbated in females.

Conclusion
Plastics have revolutionized medical device technology, transformed hematological care and transfusion medi-
cine, and facilitated modern cardiology procedures. Despite these benefits, the ubiquitous nature of plastics has 
also raised concerns pertaining to human health risks – particularly in sensitive pediatric populations. For the 
first time, we have shown that a commonly used plastic chemical (BPA) can have an immediate effect on neonatal 
cardiomyocyte beating rate, intracellular calcium handling, and the incidence of alternans. Our data suggests that 
incidental BPA exposure may precipitate secondary adverse effects on contractile performance and/or electrical 
alternans, both of which are dependent on intracellular calcium homeostasis. Additional studies are necessary 
to determine the effects of bisphenol exposure on pediatric whole heart physiology and the impact of prolonged 
exposure, which may more closely mimic clinical exposure. Given the elevated risk of BPA exposure in intensive 
care settings, our data highlights the importance of incentivizing the development, manufacturing, and clinical 
adoption of alternative biomaterials to improve patient safety.

Materials and Methods
Animals. Animal protocols were approved by the Institutional Animal Care and Use Committee of 
the Children’s Research Institute, and followed the National Institutes of Health’s Guide for the Care and Use 
of Laboratory Animals. Neonatal rat cardiomyocytes were isolated from 1 day old Sprague-Dawley rats (male 
and female, mixed litter) by an enzymatic digestion protocol, as previously described79,80. Cells were plated on 
laminin-coated coverglass (105 cells/cm2), and maintained under standard cell culture conditions in Dulbecco-
modified minimum essential medium supplemented with 5% Fetal bovine serum, 10 U/ml penicillin, and 1 μg/ml 
streptomycin (Thermo Fisher Scientific). Three days after plating, neonatal rat cardiomyocytes formed a confluent 
monolayer and exhibited strong synchronized contractions. Cardiac cells were used thereafter for subsequent 
experiments, as previously described48,80,81.

Experimental Protocol. An analytical standard of bisphenol-a (≥99% purity, Sigma Aldrich) was dissolved 
in 100% ethanol to provide a 500 mM stock solution. The stock solution was then diluted in Tyrode salt solu-
tion (Sigma Aldrich) to obtain final working concentrations of 10−9–10−4M BPA. The highest possible ethanol 

Figure 6. Reversibility of BPA-induced changes in calcium handling. (A) CaT amplitude is diminished 
following 15-min exposure to 10−4M BPA (left panel); this effect is partially reversible when 10−4M BPA is 
washed out (middle panel, right panel). (B) Normalized calcium signals shown prolonged CaT upstroke time 
and duration time following 15-min exposure to 10−4M BPA (left panel); CaT duration effects are partially 
negated following 1-hr wash out. F1 = peak fluorescence amplitude, F0 = baseline fluorescence, ns = not 
significantly different, *p ≤ 0.05, n ≥ 6.
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concentration was used as vehicle control (0.001%). Cardiomyocytes were incubated with BPA-supplemented 
media for 15 minutes for all live-cell recordings.

Cell viability measurements. Confluent adherent cardiomyocytes were exposed to maximum BPA con-
centrations (10−5–10−4M) for 30 min and cell viability was quantified. A live/dead viability dye-based assay 
(Thermo Fisher Scientific) was used to visualize and quantify cell membrane integrity in live (calcein-AM, 
495 nm excitation/517 nm emission) versus dead cells (ethidium homodimer-1, 517 nm excitation/617 nm 
emission). Widefield fluorescent images were acquired from (4) different fields of view, per coverslip, using a 
Nikon TiE microscope system equipped with a scMOS camera (Andor Zyla 4.2 plus) and deconvolution software 
(Nikon Elements, NVIDIA GPU). Relative viability was measured by the total cell area corresponding to the live 
(calcein-AM) or dead (ethidium homodimer-1) labeling, which was quantitated by fluorescent histogram pro-
files. In a second set of experiments, a resazurin assay was used to measure cell viability based on metabolic capac-
ity (PrestoBlue, Thermo Fisher Scientific). Relative viability was measured as the difference between absorbance at 
600 nm and 570 nm, which corresponds to conversion of resazurin to resorufin by live metabolically active cells.

Live imaging of calcium transients (CaT). Confluent layers of cardiomyocytes were loaded for 40 min 
at room temperature with 10 μM Fluo-4AM (Thermo Fisher Scientific), a fluorescent calcium indicator, and 
then washed in dye-free Tyrode salt solution47,80. Cell monolayers were then exposed to vehicle control or 
BPA-supplemented Tyrode media for 15 min at room temperature. Spontaneous (37 °C) and pace-induced cal-
cium transients (CaT) were acquired using a Nikon TiE microscope system (23 °C), equipped with 470 nm excita-
tion LED (SpectraX, Lumencor), 505–530 nm emission filter, and Andor iXon 860 EMCCD camera (~170 fps, 
128 × 128). Cardiac monolayers were paced using field stimulation (monophasic, 5 msec pulses, 1.5 × threshold 
voltage, 0.2–3 Hz frequency; Grass Technologies).

Analysis of beat rate variability and calcium kinetics. The following parameters were determined 
from raw CaT signals: amplitude (F1/F0), upstroke time (duration from activation to 90% of maximum ampli-
tude), upstroke velocity (Δfluorescence/s), 30% and 80% CaT duration time (duration from activation to 30% 
or 80% reuptake time)47,48. The beginning of the CaT upstroke was defined by the initial deflection from baseline 
(max d2F/dt2). Calcium alternans were induced by increasing the pacing frequency, stepwise from 0.2 Hz to 3 Hz. 
The calcium alternan ratio was calculated as [1-(CaT small/CaT large)], where CaT small and CaT large are the 
corresponding fluorescence amplitudes from a pair of alternating calcium transients49,50. Resultant values range 
from 0 (no alternans) to 1 (maximum alternans). Beat rate variability (BRV) was calculated as the standard devi-
ation of the interbeat interval.

Statistical Analysis. All values are expressed as mean + SEM, with p < 0.05 considered statistically sig-
nificant, denoted with an asterisk (*). Lowest observed adverse effect level was determined within a treatment 
group using ANOVA followed by posthoc multiple comparisons testing (individual coverslips) or multiple paired 
Student t-tests (two-tailed; baseline control vs treated), as previously described (Prism, Graphpad Software 
Inc)9,82. Representative traces and images are shown.
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