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RESEARCH Open Access

Distinct neural bases of disruptive behavior
and autism symptom severity in boys with
autism spectrum disorder
Y. J. Daniel Yang1,2*, Denis G. Sukhodolsky2, Jiedi Lei2,3, Eran Dayan4, Kevin A. Pelphrey1 and Pamela Ventola2

Abstract

Background: Disruptive behavior in autism spectrum disorder (ASD) is an important clinical problem, but its neural
basis remains poorly understood. The current research aims to better understand the neural underpinnings of disruptive
behavior in ASD, while addressing whether the neural basis is shared with or separable from that of core ASD symptoms.

Methods: Participants consisted of 48 male children and adolescents: 31 ASD (7 had high disruptive behavior) and 17
typically developing (TD) controls, well-matched on sex, age, and IQ. For ASD participants, autism symptom
severity, disruptive behavior, anxiety symptoms, and ADHD symptoms were measured. All participants were
scanned while viewing biological motion (BIO) and scrambled motion (SCR). Two fMRI contrasts were analyzed: social
perception (BIO > SCR) and Default Mode Network (DMN) deactivation (fixation > BIO). Age and IQ were included as
covariates of no interest in all analyses.

Results: First, the between-group analyses on BIO > SCR showed that ASD is characterized by hypoactivation
in the social perception circuitry, and ASD with high or low disruptive behavior exhibited similar patterns of
hypoactivation. Second, the between-group analyses on fixation > BIO showed that ASD with high disruptive
behavior exhibited more restricted and less DMN deactivation, when compared to ASD with low disruptive
behavior or TD. Third, the within-ASD analyses showed that (a) autism symptom severity (but not disruptive
behavior) was uniquely associated with less activation in the social perception regions including the posterior
superior temporal sulcus and inferior frontal gyrus; (b) disruptive behavior (but not autism symptom severity)
was uniquely associated with less DMN deactivation in the medial prefrontal cortex (MPFC) and lateral parietal cortex;
and (c) anxiety symptoms mediated the link between disruptive behavior and less DMN deactivation in both anterior
cingulate cortex (ACC) and MPFC, while ADHD symptoms mediated the link primarily in ACC.

Conclusions: In boys with ASD, disruptive behavior has a neural basis in reduced DMN deactivation, which is distinct
and separable from that of core ASD symptoms, with the latter characterized by hypoactivation in the
social perception circuitry. These differential neurobiological markers may potentially serve as neural targets
or predictors for interventions when treating disruptive behavior vs. core symptoms in ASD.

Keywords: Autism spectrum disorder, Comorbidity, Neuroimaging, Social perception, Disruptive behavior,
Oppositional defiant disorder, Anxiety disorders, ADHD, Default mode network
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Background
Recent development in the field of autism spectrum dis-
order (ASD) has been making strides in revealing the
neural basis of its core symptoms, namely social communi-
cation deficits and restrictive and repetitive behavior [1].
For example, neuroimaging studies consistently show that
the posterior superior temporal sulcus (pSTS), fusiform
gyrus (FFG), and inferior frontal gyrus (IFG) are key regions
for social information processing [2] and individuals with
ASD relative to typically developing (TD) controls exhibited
hypoactivation in these regions [3, 4]. However, ASD often
co-occurs with other psychiatric disorders [5, 6], such as
anxiety disorder [7], attention-deficit/hyperactivity disorder
(ADHD) [8], and oppositional defiant disorder (ODD) [9].
So far, knowledge regarding the neural basis of the comor-
bidity in ASD is relatively lacking in the literature, and little
is known about whether or not the co-occurring disorders
in ASD and core ASD symptoms share the same neural
basis or not. Understanding the neural basis of the comor-
bidity in ASD and defining the boundaries between ASD
and its comorbid psychiatric disorders may identify targets
for specific intervention in subgroups of ASD that could
improve quality of life, reduce impairment, and increase
treatment effectiveness for ASD. In the current research,
we focus on disruptive behavior in ASD and delineate its
neural underpinning. We also address the question of
whether the neural basis of disruptive behavior in ASD is
shared with or separable from that of core symptoms in
ASD.
Disruptive behavior in children with ASD is relatively

common, from about one fourth to one third of children
with ASD displaying disruptive behavior [6, 10], including
angry outburst, irritability, as well as oppositional, non-
compliant, and aggressive behaviors [11]. On the one
hand, disruptive behavior in children with ASD may allow
them to escape demands (e.g., escaping from learning), re-
tain access to items, and avoid sensory stimuli (e.g., noises
in the environment) [10, 12, 13]. Thus, some could argue
that for children with ASD, disruptive behavior may serve
the purpose to gain access to restricted and repetitive
interests or to escape from uncomfortable social and
sensory demands and should be conceptualized as
core ASD symptoms. On the other hand, others could
argue that disruptive behavior, characterized by a
long-lasting, context-independent pattern of angry/ir-
ritability, argumentative/defiant behavior, or vindic-
tiveness, should be viewed as a comorbidity of and
different from core ASD symptoms [10]. In this study,
we refer disruptive behavior to the latter definition
and we assessed it with a chronic behavioral pattern
independent of the functional properties or setting in
which disruptive behavior occurs, while we assumed
that it is a comorbidity that could be distinguished
from core ASD symptoms [14].

To evaluate the neural basis of core ASD symptoms,
we used a biological motion fMRI task [3]. Although be-
ing relatively impoverished stimuli, point-light displays
contain sufficient information to identify the kind of mo-
tion being produced (e.g., walking, dancing, reaching), as
well as the identity of the agent [15]. Our prior neuroim-
aging work identified dysfunction in the biological motion
processing system as reflecting key neural signatures of
ASD in affected children in terms of hypoactivation in the
ventrolateral prefrontal cortex, amygdala, IFG, pSTS, and
FFG [3]. Other fMRI studies also showed ASD-related
abnormalities in the neural pathways of processing bio-
logical motion [16, 17], particularly in the pSTS region
[18–20]. In the scanner, our study participants viewed
stimuli depicting point light displays of coherent biological
(BIO) or scrambled biological (SCR) motion, created from
motion capture data (i.e., videos created by placing lights
on the major joints of a person and filming them moving
in the dark) [3, 21].
In contrast, to evaluate the neural basis of disruptive

behavior, we used the same fMRI task but relied on a
novel fMRI contrast: fixation > BIO, which provides a
window into deactivation of the default mode network
(DMN). DMN deactivation is related to self-regulation
[22–24] and represents an important neural process
where self-related neural activity is suppressed during
focused attention on the external environment [25]. The
core DMN nodes include three interconnected regions
[26–28]: medial prefrontal cortex (MPFC), posterior cingu-
late cortex/precuneus (PCC/PC), and the lateral parietal
cortex (LPC) [27–30]. The MPFC is found to be associated
with self-appraisal [31, 32] and self-referential thoughts
[33]; the PCC/PC has been linked to arousal and conscious
perception of interoceptive stimulation [34]; and the LPC
has been reported to be related to recollection of episodic
memories and retrieval of spatial context memory [35–37].
Research suggests their roles in processing internally gener-
ated self-referential thoughts and mind-wandering in
healthy individuals [38]. An important property of the
DMN is that the network has been shown to deactivate
during cognitively demanding tasks that involve an external
target in healthy individuals [25, 27, 39], suggesting that
people may engage in down-regulation of self-referential
thoughts when processing the external task, thus reducing
interference [40]. For this reason, we chose the contrast of
fixation > BIO to tap into DMN deactivation because BIO
is relatively more cognitively demanding than fixation and
involves an external target. Accurate perception of bio-
logical motion requires individuals to first track motion
timings, then integrate perceived timings into a coherent
kinematic framework for higher-order processing. Con-
sistent with this notion, previous research showed that
DMN deactivation was necessary for healthy adults in
order to process biological motion [41].
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On the other hand, failure to deactivate DMN when
engaged in tasks has been reported in several psychopathol-
ogies, such as depression, where pathological rumination of
negative self-related thoughts during task has been linked
to poor self-regulation [25]. Several recent studies have also
suggested that DMN alternation is implicated in children
and adolescents with disruptive behavior [42–45]. However,
to the best of our knowledge, no study has examined the
link between DMN activity and disruptive behavior in ASD.
Using the biological motion task and the novel contrast of
DMN deactivation (fixation > BIO), the current study
further tested this link in children with ASD.
Importantly, the contrast of fixation > BIO should be

interpreted as DMN deactivation in only relative but not
absolute terms. Here, the potential DMN activation during
fixation is treated as a comparison point, and a positive (or
negative) value of this contrast in the DMN may indicate
that there is less (or more) activation in the DMN during
BIO than during fixation periods, arguably reflecting down
regulation of DMN activation during BIO vs. during fixa-
tions. In this research, we call it the contrast of DMN de-
activation (fixation > BIO) and emphasize that it should not
be interpreted as DMN deactivation during BIO alone. The
contrast can only be interpreted in terms of differen-
tial activation and cannot be used to reveal the abso-
lute levels of DMN activation within BIO or fixation
periods, respectively.
In sum, this study examined the neural basis of disrup-

tive behavior in ASD and investigated whether it is shared
with or separable from that of core ASD symptoms. The
two contrasts in the biological motion task, namely, social
perception (BIO > SCR) and DMN deactivation (fixation >
BIO), afford the opportunity to compare these two neural
bases within the same sample of children with ASD. We
hypothesize that there would be distinct and separable
neural bases of disruptive behavior and autism symptom
severity in ASD, in which (a) autism symptom severity
would be associated with less activation in the social per-
ception circuitry [2] and (b) disruptive behavior would be
associated with less DMN deactivation. We also explored
co-occurring anxiety and ADHD symptoms [6] as poten-
tial mediators of the neural basis of disruptive behavior.

Methods
Participants
Study participants included 48 children and adolescents
(all males) between 4 and 18 years of age. They consisted
of 31 boys with autism spectrum disorder (4.54–
18.43 years) and 17 TD boys (5.07–16.68 years). Nine
participants with ASD and 8 TD participants also par-
ticipated in a prior imaging study [3] that investigated
the neural basis of ASD. All participants received the
same fMRI imaging paradigm in the same scanner. IQ
was measured using the Differential Ability Scales-
Second Edition (DAS-II) [46]. DAS-II was used for
this project because it covers the age range of children
included in the study. DAS-II is also commonly used
in studies of children with ASD, as it requires less
language than other cognitive measures [47–50]. All
participants were high-functioning (IQ > 70); the
ranges of Full-Scale IQ (FSIQ) were 74–131 for ASD
and 78–127 for TD. The ASD and TD groups were
well-matched on age, IQ, and head motion during
fMRI scan (see Table 1).
All participants with ASD met DSM-5 [51] diagnostic

criteria for ASD as determined by expert clinical judg-
ment. This judgment was supported by the results of
gold-standard diagnostic instruments, Autism Diagnostic
Interview-Revised (ADI-R) [52] and Autism Diagnostic
Observation Schedule (ADOS) [53–56], administered by
research-reliable and licensed clinical psychologists. The
complete characterization of the ASD group is reported
in Table 2.
To rule out possible developmental delays, psychiatric

disorders, and the broad autism phenotype (BAP) [57, 58]
in the TD participants, we used the following exclusion
criteria based on the criteria used in previous research in
our lab [3]: (a) diagnosed or suspected ASD, or other
psychiatric or neurological disorder; (b) first- or second-
degree relative with diagnosed or suspected ASD; (c) an
individualized education program for special education
services, including speech/language therapy, occupational
therapy, and/or social skills intervention; or (d) Social
Responsiveness Scale (SRS)-parent total t score ≥76 (se-
vere range). In our TD sample, the SRS total t scores had

Table 1 Participants demographics and group matching

TD (n = 17) ASD (n = 31) TD vs. ASD

Variable Mean (SD) Range Mean (SD) Range t(46) p

Age (years) 10.92 (2.85) 5.07–16.68 10.86 (3.63) 4.54–18.43 0.06 0.95

IQ 104.12 (12.87) 78–127 98.10 (16.32) 74–131 1.31 0.20

Verbal IQ 104.53 (10.44) 87–120 101.52 (17.18) 72–141 0.66 0.51

Non-verbal IQ 103.65 (14.27) 74–126 96.65 (16.80) 73–138 1.45 0.15

Head motion (M absolute, mm) 0.46 (0.54) 0.08–2.08 0.48 (0.49) 0.09–1.84 −0.14 0.89

Head motion (M relative, mm) 0.10 (0.07) 0.03–0.24 0.14 (0.12) 0.03–0.46 −1.34 0.19

M mean
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M = 45.64, SD = 6.71, and range = 37–60, which were far
below the exclusion threshold and generally within the
normal range (t score ≤59).
Exclusion criteria for all participants included a history

of serious head injury or loss of consciousness. All par-
ticipants passed MRI safety screening, including being
free of any metal implants and evidence of claustropho-
bia. Written informed consent was obtained from each
participant’s parent(s), and assent was obtained from
each participant. The Human Investigations Committee
at Yale University approved this study.

Behavioral clinical measures
Autism symptom severity
The severity of ASD symptoms was measured using the
parent-reported Social Responsiveness Scale (SRS) total
raw scores [59, 60]. The scale has 65 items and assesses
social awareness, social information processing, capacity
for reciprocal social communication, social motivation,
and autistic mannerisms. Rather than using a "yes or no"

decision about the presence of symptom, the SRS uses a
4-point scale from 1 (“not true”) to 4 (“almost always
true”), and the total raw scores across 65 items provide a
fine-grained, continuous measure of the child’s symptom
severity, consistent with the notion that autism is best
conceptualized as a spectrum condition. In contrast,
ADI-R and ADOS scores are primarily for ASD diagno-
sis and provide a more limited range of scores. For this
reason, we chose the SRS total raw score as a measure
of autism symptom severity because it provides a greater
range of scores across multiple domains of ASD
symptoms.

Disruptive behavior and potential mediators
Disruptive behavior was measured with the ODD sub-
scale of the Child Symptom Inventory-4 (CSI-4) [61] for
participants aged 5 to 12 years and the Adolescent
Symptom Inventory-4 (ASI-4R) [62] for those aged 12 to
18 years. The CSI-4 and ASI-4R are parent-reported
behavior rating scales whose items correspond to the

Table 2 ASD group characteristics

Variable All (n = 31) Low ODD
(n = 24)

High ODD
(n = 7)

Low vs. high

t df p

ADI-R n = 30 n = 24 n = 6

Social 22.03 (3.99) 22.08 (3.91) 21.83 (4.67) 0.14 28 0.89

Verbal communication 17.73 (4.62) 17.96 (4.61) 16.83 (4.96) 0.53 28 0.60

Repetitive behaviors 6.23 (2.81) 6.38 (2.68) 5.67 (3.50) 0.55 28 0.59

ADOS module 2 n = 1 n = 1 —

SA domain 11.00 (—) 11.00 (—) — — — —

RRB domain 5.00 (—) 5.00 (—) — — — —

Total 16.00 (—) 16.00 (—) — — — —

ADOS module 3 n = 29 n = 22 n = 7

SA domain 9.76 (3.65) 9.68 (3.39) 10.00 (4.69) −0.20 27 0.85

RRB domain 2.52 (1.70) 2.64 (1.71) 2.14 (1.77) 0.66 27 0.51

Total 12.28 (4.33) 12.32 (3.95) 12.14 (5.73) 0.09 27 0.93

ADOS module 4 n = 1 n = 1 —

SA domain 11.00 (—) 11.00 (—) — — — —

RRB domain 1.00 (—) 1.00 (—) — — — —

Total 12.00 (—) 12.00 (—) — — — —

ADOS Calibrated Severity Score 7.19 (1.85) 7.29 (1.68) 6.86 (2.48) 0.54 29 0.59

SRS-parent total raw score 97.87 (30.13) 93.33 (30.70) 113.43 (23.73) −1.59 29 0.12

Disruptive behavior 9.32 (5.17) 7.17 (3.51) 16.71 (2.06) −6.81**** 29 < 0.0001

Anxiety symptoms 7.26 (4.97) 6.21 (4.08) 10.86 (6.34) −2.34* 29 0.03

ADHD symptoms 25.25 (8.10) 23.38 (6.24) 31.66 (10.80) −2.60* 29 0.02

Head motion (M absolute, mm) 0.48 (0.49) 0.47 (0.45) 0.52 (0.66) −0.26 29 0.80

Head motion (M relative, mm) 0.14 (0.12) 0.14 (0.11) 0.14 (0.15) −0.02 29 0.98

The numbers are mean (SD)
ADI-R Autism Diagnostic Interview-Revised, ADOS Autism Diagnostic Observation Schedule, SRS Social Responsiveness Scale, ADHD attention-deficit/hyperactivity
disorder, ODD oppositional defiant disorder, SA social affect, RRB restricted and repetitive behaviors, M mean
*p < 0.05; ****p < 0.0001

Yang et al. Journal of Neurodevelopmental Disorders  (2017) 9:1 Page 4 of 17



symptoms of disorders defined by the DSM-IV. The
ODD subscale in the CSI-4 or ASI-4R includes eight
items. Example items are “loses temper,” “argues with
adults,” and “takes anger out on others or tries to get
even.” On each item, parent rated how well it describes
the child’s overall behavior on a 4-point frequency scale
from 0 (“never”) to 3 (“very often”). The ODD scale has
been used in children with ASD and cut-off scores (>13
in CSI-4 and >12 in ASI-4R) have been used to identify
clinically significant symptoms of ODD [9, 61–63].
In addition, to test candidate mediators of a possible

link between disruptive behavior and its neural basis in
ASD, we included measures of anxiety and ADHD
symptoms, respectively. First, anxiety symptoms were
measured via the Generalized Anxiety Disorder (GAD)
subscale in CSI-4 and ASI-4R [61, 62], which includes 8
items (M = 7.26, SD = 4.97) using the same 4-point scale.
Example GAD items are “has difficulty controlling worries”,
and “is extremely tense or unable to relax”. Second, ADHD
symptoms were measured via the combined ADHD sub-
scale (combining both inattentive and hyperactivity/impul-
sivity dimensions) in CSI-4 and ASI-4R [61, 62], which
includes 18 items (M = 25.25, SD = 8.10) using the same 4-
point scale. Example ADHD items are “fails to give close
attention to details or makes careless mistakes” and “fidgets
with hands or feet or squirms in seat.” As expected, in ASD
participants, ODD symptoms were significantly correlated
with anxiety symptoms, r = 0.45, p = 0.01, and with ADHD
symptoms, r = 0.50, p < 0.01, supporting that both anxiety
and ADHD symptoms may serve as potential mediators.
For our analyses, the ASD sample was further divided

into those with low (n = 24) vs. high (n = 7) disruptive
behavior based on the cutoffs in the ODD subscale (>13
in CSI-4 and >12 in ASI-4R) [61, 62]. As seen in Table 2,
the two ASD subgroups were statistically comparable on
autism symptom severity, p = 0.12, but significantly dif-
ferent on disruptive behavior, anxiety symptoms, and
ADHD symptoms, ps < 0.05.

fMRI experimental design
Participants were scanned while viewing coherent and
scrambled point-light displays of biological motion created
from motion capture data. The coherent biological (BIO)
motion displays featured an adult male actor performing
movements and contain 16 points corresponding to major
joints. The scrambled (SCR) motion animations were
created by randomly plotting the trajectories of all the 16
points from the coherent biological motion displays on a
black background (see Fig. 1 for an example). Thus, the co-
herent and scrambled displays contained the same local
motion information, but only the coherent displays con-
tained the configuration of a person [15]. Stimuli were pre-
sented using E-Prime 2.0 software (Psychological Software
Tools, Pittsburgh, PA, USA) during the scan. Six coherent

biological motion clips (BIO) and six scrambled motion
clips (SCR) were presented once each in an alternating
block design (time per block, ~24 s). The experiment began
with a 20-s fixation period and ended with a 16-s fixation
period. The total duration was about 328 s. The movies
were presented without audio. The participants were asked
to watch the videos and reminded to remain still and alert.

Imaging acquisition
Scanning was performed on a Siemens MAGNETOM
Trio, A Tim System 3 T scanner at the Yale Magnetic
Resonance Research Center. For each participant, a
structural MRI image was acquired with a 32-channel
head coil, a T1-weighted MPRAGE sequence, and the
following parameters: 160 sagittal slices; TR = 1900 ms;
TE = 2.96 ms; flip angle = 9°; slice thickness = 1.00 mm;
voxel size = 1 × 1 × 1 mm3; matrix = 256 × 256; and field
of view = 256 × 256 mm2. Afterwards, BOLD T2*-
weighted functional MRI images for the biological mo-
tion task were acquired using the following parameters:
164 volumes; TR = 2000 ms; TE = 25 ms; flip angle = 60°;
slice thickness = 4.00 mm; voxel size = 3.44 × 3.44 ×
4.00 mm3; matrix = 64 × 64; field of view = 220 ×
220 mm2; number of slices per volume = 34; and inter-
leaved acquisition.

Fig. 1 Example of fMRI stimuli used in the current study
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Imaging processing
The T1-weighted MPRAGE structural scan was seg-
mented by SPM12 into gray matter, white matter (WM),
and cerebrospinal fluid (CSF) images. This method has
been shown to be highly accurate and has little bias
when compared to manual measurement [64].
The fMRI data were processed using FSL [65] v5.0.8

and the participant-level preprocessing steps followed a
standardized processing stream described in the paper of
ICA-AROMA (ICA-based strategy for Automatic Removal
of Motion Artifacts) [66] and consisted of the following: (1)
motion correction using MCFLIRT, (2) interleaved slice
timing correction, (3) BET brain extraction, (4) grand mean
intensity normalization for the whole 4D data set, (5) spatial
smoothing with 5 mm FWHM, (6) data denoising with
ICA-AROMA [66], which uses a robust set of theoretically
motivated temporal and spatial features to remove motion-
related spurious noise, (7) nuisance regression using time-
series for WM and CSF signal to remove residual, physio-
logical noise, and finally (8) high-pass temporal filtering
(100 s). The first 4 s were discarded to establish T1 equilib-
rium. Registration of the fMRI data was performed using
both the subject’s structural scan and then the Montreal
Neurological Institute (MNI152) standard brain. Prepro-
cessed data were then pre-whitened using FSL’s FILM to re-
move time series autocorrelation.
To model the BIO and SCR conditions, the timing of

the corresponding blocks was convolved with the default
gamma function (phase = 0 s, standard deviation = 3 s,
mean lag = 6 s) with temporal derivatives. Fixation was
modeled as an implicit baseline. The two participant-
level contrasts of interest were BIO > SCR and fixation >
BIO, which served as inputs for the subsequent mass
univariate voxel-wise group-level GLM (General Linear
Model) analyses. Because there was a wide age range in
the participants, age was included as a covariate of no
interest. To control for the possibility that IQ may alter
the difficulty of processing biological motion [67], IQ
was also included as a covariate of no interest.

Group-level GLM analyses
The group-level GLM analyses were conducted using
mixed-effects modeling by FSL’s FLAME (FMRIB’s
Local Analysis of Mixed Effects) 1 + 2 algorithm to en-
sure that the results are generalizable to the popula-
tion and are the most accurate estimate of activation.
Because the research is pioneering and the first of its
kind in ASD and it is desirable not to miss possible
true effects [68], while there were only 7 participants
in the subgroup of ASD with high ODD, the analyses
were based on a relatively lenient cluster-defining
threshold (CDT) of Z > 1.96 and corrected for multiple
comparisons with a cluster-level significance threshold
of p < 0.05. Information about the surviving clusters

was reported, including the anatomical regions covered by
the clusters based on the Automated Anatomical Labeling
v2 (AAL2) atlas [69], the coordinates of the peak voxels
within each of the anatomical regions, and the Z-statistics
associated with the peak voxels. Voxel size = 2 × 2 ×
2 mm3. Age and IQ were controlled for as covariates of
no interest in all analyses. Continuous variables were
mean-centered before included in the group-level GLM
analyses.
To understand the neural basis of disruptive behavior

in children with ASD, we first analyzed between-group
differences on the fMRI contrast of social perception
(BIO > SCR) and then on the contrast of DMN deacti-
vation (fixation > BIO). The between-group analyses
were based on the following group-level GLM equa-
tions (1) and (2), where y is the voxel-level activation,
β’s are the parameter estimates, and ε is the residual.
These GLM equations were estimated on the two con-
trasts respectively, namely, social perception (BIO >
SCR) and DMN deactivation (fixation > BIO).
GLM (1): y = β1 × (TD = 1; otherwise = 0) + β2 × (ASDAll

= 1; otherwise = 0) +β3 × age + β4 × IQ + ε
GLM (2): y = β1 × (TD= 1; otherwise = 0) + β2 × (ASDLow-

ODD = 1; otherwise = 0) + β3 × (ASDHigh-ODD = 1; otherwise
= 0) + β4 × age + β5 × IQ + ε
Next, within the ASD sample, we analyzed the

neural correlates of disruptive behavior and autism
symptom severity, respectively. However, ODD total
scores (tapping disruptive behavior) and SRS total
raw scores (tapping autism symptom severity) were
marginally correlated, r = 0.32, p = 0.08, suggesting
that the two measures were differentiable but also
partly overlapped. To be comprehensive, we exam-
ined the effects of ODD total scores and SRS total
raw scores first separately and then simultaneously
by covarying out the effects of the other dimension.
The within-ASD analyses were based on the following
GLM equations (3), (4), and (5). These GLM equations
were estimated on the two contrasts respectively, namely,
the contrast of social perception (BIO > SCR) and that of
DMN deactivation (fixation > BIO).
GLM (3): y = β0 + β1 × age + β2 × IQ + β3 × SRStotal-

raw-scores + ε
GLM (4): y = β0 + β1 × age + β2 × IQ + β3 × ODDtotal-

scores + ε
GLM (5): y = β0 + β1 × age + β2 × IQ + β3 × SRStotal-

raw-scores + β4 × ODDtotal-scores + ε
Finally, to explore how anxiety and ADHD symptoms,

respectively, mediated the neural correlates of disruptive
behavior, we relied on the well-established procedure
described in the literature [70] and the following GLM
equations (6) and (7). These GLM equations were
estimated on the contrast of DMN deactivation (fix-
ation > BIO).
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GLM (6): y = β0 + β1 × age + β2 × IQ + β3 ×ODDtotal-scores

+ β4 × Anxietysymptoms + ε
GLM (7): y = β0 + β1 × age + β2 × IQ + β3 ×ODDtotal-scores

+ β4 × ADHDsymptoms + ε

Power considerations
Our fMRI power analyses involve calculations for the
number of participants needed to detect the group dif-
ference between TD and ASD on this contrast of BIO >
SCR. Our prior study of biological motion perception
[3] showed large group differences (Cohen’s d ≥ 1.5) in
25 children with ASD relative to 17 TD controls in the
right pSTS, right amygdala, right FFG, right IFG, and
ventromedial prefrontal cortex. According to G*Power
[71], at α = 0.05, two-sided, with 17 TD and 7–31 ASD
participants, we would have 89.1–99.8% power to detect
the between-group difference. This ensures that this
study is sufficiently powered to test group differences on
the contrast of BIO > SCR. In contrast, for the novel
contrast of fixation > BIO, there was no prior study avail-
able to calculate the required sample size, and we tested
its effects in this study for the first time, although our
confidence was boosted because several recent studies
have consistently suggested that DMN alternation is
implicated in children and adolescents with disruptive
behavior [42–45].

Results
Between-group differences on the contrast of social
perception (BIO > SCR)
To limit the inferential space to regions showing group
main effects, we masked the analysis by a combined,
inclusive (TD∪ASD; the union of the two sets) mask
consisting of regions that showed main effects for BIO >
SCR within either group (see Additional file 1). Here, we
found that boys with ASD relative to TD controls have
reliably weaker activation in the pSTS and FFG regions
on the right hemisphere (Fig. 2a; Table 3). Interestingly,

the hypoactivation in these two regions was largely un-
affected by the presence of disruptive behavior, as both
ASD with low disruptive behavior and ASD with high
disruptive behavior showed similar hypoactivation in
these regions (Fig. 2b, c; Table 3), and direct comparison
between ASD with high vs. low disruptive behavior on
this contrast revealed no regions of significant differ-
ence. In brief, the between-group results on the con-
trast of BIO > SCR showed that ASD is characterized
by hypoactivation in specific social perception regions,
while ASD with high or low disruptive behavior exhib-
ited similar hypoactivation in these regions.

Between-group differences on the contrast of DMN
deactivation (fixation > BIO)
To ensure that the results can be readily interpreted as
DMN deactivation, the between-group analysis on the
contrast of DMN deactivation (fixation > BIO) was
masked by a DMN mask [26]. The DMN mask was well
established in the literature with 1000 healthy young
adults and includes several key DMN regions, including
(but not limited to) the ventral medial prefrontal cor-
tex, the dorsal medial prefrontal cortex, the posterior
cingulate cortex, and adjacent precuneus plus the lat-
eral parietal cortex [26, 27]. Furthermore, to limit the
inferential space to regions showing group main effects,
we masked the analysis by a combined, inclusive
(TD∪ASD; the union of the two sets) mask consisting
of regions that showed main effects for fixation > BIO
within the DMN within either group (see Additional
file 1). Here, our analyses revealed that TD and ASD
had comparable deactivations across multiple DMN
regions (see Additional file 2), while there was no re-
gion showing significant group differences between TD
and ASD. Direct comparison between TD and ASD
with low disruptive behavior on this contrast also re-
vealed no regions of significant difference. However,
compared to TD (Fig. 3a) and ASD with low disruptive

Fig. 2 Between-group results on the contrast of social perception (BIO > SCR). BIO, biological motion; SCR, scrambled motion; pSTS, posterior
superior temporal sulcus; R, right hemisphere; TD, typically developing; ASD, autism spectrum disorder; ODD, oppositional defiant disorder. a
TD > ASDAll. b TD > ASDLow-ODD. c TD > ASDHigh-ODD
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behavior (Fig. 3b), respectively, ASD with high dis-
ruptive behavior (Fig. 3c) exhibited more restricted
regions of DMN deactivation. This is supported by
direct comparison between ASD with high vs. low
disruptive behavior, which showed that ASD with
low (vs. high) disruptive behavior had significantly
greater deactivation in several DMN regions such as
the medial prefrontal cortex and the inferior parietal
gyrus (Table 4). Furthermore, at a more liberal
threshold (Z > 1.96, p < 0.05, uncorrected; minimum
clusters = 17 voxels), direct comparison between TD
and ASD with high disruptive behavior support that
TD had significantly greater deactivation in several
DMN regions including the right angular gyrus, the
left supramarginal gyrus, the bilateral anterior cingu-
late gyri. In brief, the between-group results on the
contrast of DMN deactivation showed that ASD with
high disruptive behavior exhibited more restricted
and less DMN deactivation, when compared to ASD
with low disruptive behavior or TD.

Neural correlates of disruptive behavior and autism
symptom severity within ASD
The first analysis was on the contrast of social percep-
tion (BIO > SCR). As in the between-group analyses, we
masked the analysis by a combined, inclusive (TD∪ASD)
mask consisting of regions that showed main effects for
BIO > SCR within either group (see Additional file 1).
First, when ODD total scores and SRS total raw scores
were examined separately, the analysis did not reveal
any regions showing either positive or negative correla-
tions between ODD total scores and the contrast of
BIO > SCR, and there were no regions showing positive
correlations with SRS total raw scores on this contrast,
either. However, we found reliable negative correlations
between SRS total raw scores and the contrast of BIO >
SCR in the right IFG (694 voxels; see Additional file 3).
Second, when ODD total scores and SRS total raw
scores were examined simultaneously, there were also
no regions showing either positive or negative correla-
tions between ODD total scores and the contrast of

Table 3 Peaks of regions in which the contrast of social perception (BIO > SCR) exhibited TD > ASD group differences

TD > ASDAll TD > ASDLow-ODD TD > ASDHigh-ODD

Anatomical regions x y z Z x y z Z x y z Z

Angular gyrus R 34 −60 42 3.09 34 −58 42 4.13

Fusiform gyrus R 34 −44 −4 2.72 42 −54 −16 2.56 34 −44 −4 2.82

Hippocampus R 36 −34 −4 3.11

Inferior occipital gyrus R 52 −78 −4 3.60 46 −86 −2 3.61

Middle occipital gyrus R 38 −92 8 4.38 44 −88 6 4.35 34 −62 38 2.87

Inferior parietal gyrus R 38 −54 40 2.71 36 −54 42 3.38

Supramarginal gyrus R 38 −42 42 3.06

Inferior temporal gyrus R 58 −64 −14 3.93 58 −64 −14 3.68 42 −58 −8 3.15

Middle temporal gyrusa R 56 −72 0 3.95 56 −72 0 3.97 44 −68 16 3.37

Coordinates are in MNI152 mm space. Results were thresholded at Z > 1.96 (p < 0.05) and corrected for multiple comparisons at the cluster level (p < 0.05)
R right, BIO biological motion, SCR scrambled motion, ODD oppositional defiant disorder
aThe hypoactivation in the right posterior superior temporal sulcus (pSTS) was detected in all these three comparisons (see Fig. 2). Because the right pSTS is not
one of the pre-defined anatomical regions of the AAL2 atlas, it was not listed here. In our results, the hypoactivation in the right pSTS was primarily in
the anatomical region of the right middle temporal gyrus

Fig. 3 Group-based results on the contrast of DMN deactivation (fixation > BIO). DMN, default mode network; BIO, biological motion. a TD.
b ASDLow-ODD. c ASDHigh-ODD
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BIO > SCR, and there were also no regions showing
positive correlations with SRS total raw scores on this
contrast. However, there were reliable negative correla-
tions between SRS total raw scores and the contrast of
BIO > SCR in the right pSTS and IFG (1426 voxels; Fig. 4;
Table 5), such that children and adolescents with more
severe autism symptoms showed less neural activations
in these social perception regions. Importantly, the
regions showing negative correlations between SRS total
raw scores and the contrast of BIO > SCR—whether SRS
total raw scores and ODD total scores were examined
separately or simultaneously—were the same regions
where social perception activation has been shown to be
weaker in ASD (vs. TD) children [2–4]. In brief, con-
sistent with the between-group results, the within-ASD
results on the contrast of BIO > SCR showed that as
autism symptom severity increases, activation decreases
in key social perception regions, whereas there was no
evidence that disruptive behavior is associated with
social perception activation.
The second analysis was based on the contrast of

DMN deactivation (fixation > BIO). As in the between-
group analyses, we masked the analysis by a combined,

inclusive (TD∪ASD) mask consisting of regions that
showed main effects for fixation > BIO within the
DMN within either group (see Additional file 1). First,
when ODD total scores and SRS total raw scores were
examined separately, the analysis did not reveal any
regions showing either positive or negative correla-
tions between SRS total raw scores and the contrast of
fixation > BIO, and there were no regions showing
positive correlations with ODD total scores on this
contrast, either. However, we found reliable negative
correlations between ODD total scores and the con-
trast of fixation > BIO in the medial prefrontal cortex
(MPFC) and lateral parietal cortex (LPC) (1277 voxels;
Fig. 5; Table 6), such that children with more disrup-
tive behavior showed less DMN deactivation in these
regions. Second, when ODD total scores and SRS total
raw scores were examined simultaneously, there were
also no regions showing either positive or negative
correlations between SRS total raw scores and the
contrast of fixation > BIO, and there were also no regions
showing positive correlations with ODD total scores on
this contrast. However, there were reliable negative corre-
lations between ODD total scores and the contrast of
fixation > BIO in the left LPC (700 voxels; see Additional
file 4). Notably, the regions showing negative correlations
between ODD total scores and the contrast of fixation >
BIO—whether SRS total raw scores and ODD total scores
were examined separately or simultaneously—are com-
pletely non-overlapped with the regions that showed
negative correlations between the contrast of BIO > SCR
and SRS total raw scores. In brief, consistent with the
between-group results, the within-ASD results on the
contrast of DMN deactivation (fixation > BIO) showed
that as disruptive behavior increases, DMN deactivation
decreases in specific regions, whereas there is no evidence
that autism symptom severity is associated with DMN
deactivation.

Fig. 4 Neural correlates of autism symptom severity on the contrast of social perception (BIO > SCR) in ASD. Autism symptom severity was based
on Social Responsiveness Scale (SRS) total raw scores, while controlling for oppositional defiant disorder (ODD) scores. Left panel illustrates the
brain regions showing significant correlates. Right panel is the scatterplot of autism symptom severity (x-axis) and the average activations to
BIO > SCR in these social perception brain regions (y-axis; unit: percent signal change), with a regression line and the 95% confidence intervals.
BIO, biological motion; SCR, scrambled motion; pSTS, posterior superior temporal sulcus; IFG, inferior frontal gyrus. ***p < 0.001

Table 4 Peaks of DMN regions in which the contrast of DMN
deactivation (fixation > BIO) exhibited ASDLow-ODD > ASDHigh-ODD

group differences

Anatomical regions x y z Z

Angular gyrus L −42 −58 40 3.46

Anterior cingulate and paracingulate gyri L −2 42 6 3.14

R 6 36 8 2.85

Superior frontal gyrus, medial L −8 62 8 2.96

Inferior parietal gyrus L −50 −58 46 2.81

Supramarginal gyrus L −56 −52 32 2.69

Coordinates are in MNI152 mm space. Results were thresholded at Z > 1.96
(p < 0.05) and corrected for multiple comparisons at the cluster level (p < 0.05)
L left, R right, BIO biological motion, ODD oppositional defiant disorder
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Based on the results from the second analysis showing
the link between disruptive behavior and less deactivation
in specific DMN regions in ASD, we further explored pos-
sible underlying mechanisms that might help explain this
link. Specifically, we tested whether anxiety and ADHD
symptoms, respectively, might mediate this link.
For anxiety symptoms, first, there was a significant

correlation between disruptive behavior and anxiety
symptoms, r = 0.45, t(29) = 2.72, p = 0.01, supporting the
potency of anxiety symptoms as a mediator. Second,
when we entered disruptive behavior and anxiety symp-
toms simultaneously as independent variables in GLM
equation (6) on the contrast of DMN deactivation (fix-
ation > BIO), and masked the analysis by the specific
regions that showed the link between disruptive behavior
and less DMN deactivation, the analysis revealed that
anxiety symptoms partially mediated the link within the
DMN in a cluster (188 voxels, 1504 mm3) primarily
localized within the anterior cingulate cortex (ACC)

and the medial part of the superior frontal gyrus
(Fig. 6; Table 7), the completely standardized indirect
effect = −0.26, 95% CI = [−0.43, −0.11], Sobel’s Z =
−2.24, p = 0.03.
Finally, for ADHD symptoms, first, there was a signifi-

cant correlation between disruptive behavior and ADHD
symptoms, r = 0.50, t(29) = 3.11, p < 0.01, supporting the
potency of ADHD symptoms as a mediator. Second,
when we entered disruptive behavior and ADHD symp-
toms simultaneously as independent variables in GLM
equation (7) on the contrast of DMN deactivation (fix-
ation > BIO), and masked the analysis by the specific
regions that showed the link between disruptive behavior
and less DMN deactivation, the analysis revealed that
ADHD symptoms partially mediated the link within the
DMN in a cluster (57 voxels, 456 mm3) primarily localized
in ACC (Fig. 6; Table 7), the completely standardized
indirect effect = −0.24, 95% CI = [−0.55, −0.07], Sobel’s Z
= −2.17, p = 0.03. There was a small overlapped region
(25 voxels, 200 mm3) between the mediating regions of
anxiety symptoms (13.30%) and those of ADHD symp-
toms (43.86%). In brief, these results provide the evidence
that both anxiety and ADHD symptoms partially and
focally mediated the link between disruptive behavior and
less DMN deactivation in ASD.

Analyses on the contrast of fixation > SCR and that of
SCR > BIO
While the contrast of fixation > BIO showed large regions
of DMN deactivation and was useful in revealing the
neural basis of disruptive behavior in ASD, it remained
unclear to what extent the results were specific to this
contrast. To address this issue, we conducted follow-up
analyses using GLM equations (1) and (4) on the contrast
of fixation > SCR and that of SCR > BIO, respectively.
First, on the contrast of fixation > SCR, the results showed
that there were no DMN regions in the TD group and

Fig. 5 Neural correlates of disruptive behavior on the contrast of DMN deactivation (fixation > BIO) in ASD. Disruptive behavior was based on
oppositional defiant disorder (ODD) scores, without controlling for Social Responsiveness Scale (SRS) total raw scores. Left panel illustrates the
brain regions showing significant correlates. Right panel is the scatterplot of disruptive behavior (x-axis) and the average DMN deactivations to
fixation > BIO in these brain regions (y-axis; unit: percent signal change), with a regression line and the 95% confidence intervals. DMN, default
mode network; BIO, biological motion; MPFC, medial prefrontal cortex; LPC, lateral parietal cortex. ****p < 0.0001

Table 5 Peaks of regions where the contrast of social perception
(BIO > SCR) was negatively correlated with autism symptom
severity

Anatomical regions x y z Z

Inferior frontal gyrus, opercular part R 40 8 32 4.38

Inferior frontal gyrus, triangular part R 36 20 24 4.51

Middle frontal gyrus R 36 20 22 3.73

Precentral gyrus R 42 6 32 3.80

Supramarginal gyrus R 50 −40 30 3.51

Middle temporal gyrus R 60 −60 6 3.31

Superior temporal gyrus R 52 −48 20 3.43

Autism symptom severity was based on Social Responsiveness Scale (SRS)
total raw scores while controlling for oppositional defiant disorder (ODD)
scores. Coordinates are in MNI152 mm space. Results were thresholded at Z >
1.96 (p < 0.05) and corrected for multiple comparisons at the cluster
level (p < 0.05)
R right, BIO biological motion, SCR scrambled motion
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relatively limited DMN regions in the ASD group (see
Additional file 5), while there were no DMN regions
showing the link between ODD total scores and less
DMN deactivation in ASD on this contrast. Second, on
the contrast of SCR > BIO, the results showed that there
were also large DMN regions in both TD and ASD groups
and the regions were similar to the findings with fixation >
BIO, while there were also negative correlations between
ODD total scores and less DMN deactivation in ASD in
the MPFC and left LPC regions (see Additional file 5).

Discussion
Disruptive behavior in children with ASD is an import-
ant clinical problem, and the symptoms often impact
overall functioning and exacerbate psychosocial impair-
ment [14]. Better defining the neural basis of disruptive
behavior in ASD and its relationship with the core
symptoms of ASD may help identify targets for more

effective treatment (e.g., improved and more specific be-
havioral and pharmacological interventions). To our
knowledge, the current study is the first to examine the
neural underpinning of disruptive behavior in ASD.
In terms of neural correlates, our results first showed

that as expected, the ASD group (vs. TD)—whether it
was the overall ASD sample, or ASD subgroups of high
or low disruptive behavior—consistently showed hypoac-
tivation in well-established social information processing
regions such as the right pSTS and FFG, while providing
no evidence that hypoactivation in ASD in these regions
changes as a function of disruptive behavior. This pro-
vides extended support that hypoactivation in the social
perception circuitry is tied with core ASD symptoms
[2–4] and provides preliminary evidence that the
hypoactivation can be observed across high or low
levels of disruptive behavior.
Furthermore, as expected, the contrast of fixation >

BIO revealed large regions of DMN deactivation in both
TD and ASD groups. Within these regions, we found
that ASD with high disruptive behavior (vs. ASD with
low disruptive behavior or TD) showed more restricted
regions and less DMN deactivation, suggesting that
DMN deactivation in ASD changes as a function of dis-
ruptive behavior and that there is DMN abnormality in
the ASD subgroup with high disruptive behavior. In
addition, consistent with the between-group findings,
the within-ASD dimensional analyses showed that
whereas autism symptom severity (but not disruptive
behavior) was uniquely associated with less social
perception activation in the right pSTS and IFG, disrup-
tive behavior (but not autism symptom severity) was
uniquely associated with less DMN deactivation in the
MPFC and LPC. In brief, the results provide the doubly
dissociable evidence that disruptive behavior and autism

Fig. 6 Anxiety symptoms and ADHD symptoms, respectively, mediated the link between disruptive behavior and less DMN deactivation in ASD.
Left panel illustrates the brain regions showing the mediation effects. Right panel illustrates the corresponding mediation models. DMN, default
mode network. *p < 0.05 **p < 0.01 ***p < 0.001

Table 6 Peaks of regions in which the contrast of DMN
deactivation (fixation > BIO) was negatively correlated with
disruptive behavior within ASD

Anatomical regions x y z Z

Angular gyrus L −42 −58 40 3.27

Anterior cingulate and paracingulate gyri L 0 40 26 3.04

R 4 42 26 2.81

Superior frontal gyrus, medial orbital L −10 56 −2 2.52

Superior frontal gyrus, medial L 0 42 26 3.01

Inferior parietal gyrus L −52 −58 48 3.46

Supramarginal gyrus L −60 −50 34 3.24

Disruptive behavior was based on oppositional defiant disorder (ODD) scores,
without controlling for Social Responsiveness Scale (SRS) total raw scores.
Coordinates are in MNI152 mm space. Results were thresholded at Z > 1.96
(p < 0.05) and corrected for multiple comparisons at the cluster level (p < 0.05)
L left, R Right, BIO biological motion, DMN default mode network
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symptom severity in children and adolescents with ASD
have distinct, separable neural bases. Critically, these
findings imply that differential treatment should be pro-
vided to treat disruptive behavior in ASD and the treat-
ment could aim at improving DMN functions (e.g.,
[72]), while DMN deactivation may also be tested as a
neural predictor or mechanism of behavioral response to
treatment [73].
While the contrast of fixation > BIO is useful in revealing

the neural basis of disruptive behavior in ASD, follow-up
analyses on the contrasts of fixation > SCR and SCR > BIO
provide additional insights into its generality. First, on the
contrast of fixation > SCR, there were relatively limited
DMN deactivations in the ASD group, and no regions of
DMN deactivations in the TD group. This suggests that
SCR (vs. fixation) may not be as critically cognitively de-
manding and requiring active suppression of self-referential
thoughts as BIO (vs. fixation) and may be ill-suited to test
the neural basis of disruptive behavior in ASD. Second, on
the contrast of SCR > BIO, there were also large regions of
DMN deactivation in either TD or ASD group, and within
the ASD group, disruptive behavior was negatively corre-
lated with DMN deactivation in MPFC and LPC. This
suggests that the contrast of SCR > BIO is also useful in de-
tecting DMN deactivation and revealing the neural basis of
disruptive behavior in ASD. However, we argue that the
contrast of fixation > BIO affords a more straightforward
interpretation of DMN deactivation than SCR > BIO
because fixation (compared to SCR) involves relatively
minimal external stimuli.
In the within-ASD dimensional analyses, it is intriguing

that SRS total raw scores and ODD total scores were
found to be marginally correlated in ASD. While this sug-
gests some discriminant validity of these two entities and
that disruptive behavior is a relatively distinct comorbidity
of ASD, rather than just a manifestation of the core symp-
toms of ASD, the finding also suggests that there was
some overlap in the two measures. This is consistent with

the past findings that SRS-parent total scores were higher
in clinical populations with ADHD and/or conduct disor-
ders (CD) [60] and SRS-parent total scores were better at
differentiating ASD and TD than differentiating ASD and
ODD/CD [74]. One possible explanation is that the SRS-
parent total scores may measure social impairments in
general, rather than exclusively ASD symptomatology, and
it is likely that a child or adolescent with high ODD would
also have affected social skills and thus elevated SRS total
scores. Accordingly, a purer measure of autism symptom
severity might be SRS total raw scores partialling out
ODD total scores. Although speculative, this possibility is
consistent with our finding that before we controlled for
ODD total scores, SRS total raw scores were found to
relate to less social perception activation in only the right
IFG; however, after controlling for ODD total scores, less
social perception activation was found in the right IFG as
well as the right pSTS. By the same logic, partialling out
SRS total raw scores would potentially remove some
variance of disruptive behavior in the ODD total scores.
Again, although speculative, this possibility is consistent
with our finding that before we controlled for SRS total
raw scores, ODD total scores were found to relate to less
DMN deactivation in the LPC and MPFC; however, after
controlling for SRS total raw scores, less DMN deactiva-
tion was found only in the LPC.
While it remains a matter of debate whether disruptive

behavior in children with ASD is an epiphenomenon
(i.e., pleiotropic manifestations of the ASD diathesis),
phenocopy (i.e., induced by living in an environment
due to having ASD symptoms), or co-morbid psychiatry
entity that is distinct from ASD itself, previous literature
shows that the psychopathology of children with disrup-
tive behavior is similar between ASD and non-ASD
control samples [63], which suggests that the etiology of
disruptive behavior in ASD may be separable from that
of the core symptoms of ASD. Our results are consistent
with this previous behavioral finding and further provide

Table 7 Peaks of regions where ADHD and anxiety symptoms mediated the link between disruptive behavior and less DMN
deactivation in ASD

Mediator Anatomical regions x y z Z

Anxiety symptoms Anterior cingulate and paracingulate gyri L −10 38 10 3.11

R 6 38 28 2.67

Middle cingulate and paracingulate gyri R 2 36 30 2.63

Superior frontal gyrus, medial L −2 38 28 2.69

R 4 42 32 2.63

ADHD symptoms Anterior cingulate and paracingulate gyri L 2 38 14 3.16

R 6 38 28 2.39

Middle cingulate and paracingulate gyri R 2 36 30 2.76

Superior frontal gyrus, medial L 2 34 32 2.78

Coordinates are in MNI152 mm space. Results were thresholded at Z > 1.96 (p < 0.05) and corrected for multiple comparisons at the cluster level (p < 0.05)
L left, R right, DMN default mode network
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the first neural evidence that the endophenotype of dis-
ruptive behavior in ASD is differentiable from that of
core ASD symptoms in ASD.
Our results also showed that anxiety and ADHD symp-

toms, respectively, mediate the link between disruptive
behavior and less DMN deactivation in ASD in the MPFC
and ACC, with ADHD symptoms playing more of a role
in the ACC, and anxiety symptoms in both ACC and
MPFC. The ACC has been implicated in stimulus selec-
tion (focusing attention) and response selection (related to
inhibiting impulsivity) and dysfunctional in ADHD [75].
The MPFC has been implicated in self-referential process-
ing and self-esteem or positive/negative self-endorsement
and dysfunctional in anxiety disorder [76, 77]. Our find-
ings thus help explain the possible neural mechanisms of
how disruptive behavior in ASD is related to less DMN
deactivation, and may provide targets for even more
precise interventions in ASD children with disruptive
behavior. It should be noted that the evidence for the
mediating effects is limited to MPFC and ACC but not
other DMN regions such as LPC. Indeed, more research is
needed to understand the full neural mechanisms under-
lying disruptive behavior in ASD.
Currently, the Food and Drug Administration (FDA)

has approved two atypical antipsychotic drugs for treat-
ing irritability and disruptive behavior associated with
autism: risperidone [78, 79] and aripiprazole [80, 81].
However, neither drug has been shown to be effective in
improving the core ASD symptoms, particularly social
communicative impairments [82]. Our results suggest
that disruptive behavior and core ASD symptoms have
distinct and separable neural processes, which leads to
the hypothesis that the neural mechanisms of these two
drugs are specifically related to the DMN but not the
social perceptual processes; future research can test this
hypothesis. Furthermore, our results provide the evi-
dence that social perceptual neural processes should be
the target for treating core ASD symptoms. Recently, for
example, oxytocin was found to improve brain function
in children with ASD [83] in the same brain regions
identified as underlying social perception in the current
study (pSTS and IFG). In sum, the neural bases revealed
in this research may serve as differential neurobiological
markers when developing or evaluating behavioral and
pharmacological interventions in ASD.
As it is characterized by frequent angry outburst and irrit-

ability, disruptive behavior may be more broadly related to
mood dysregulation [84] as well as poor self-regulation
[85], including deficits in self-monitoring, self-control, and
self-management [86–88]. While our biological motion task
provides a window into DMN deactivation, it awaits to be
tested how disruptive behavior in ASD may be related to
other self-regulatory neural systems, such as the meta-
cognitive system [89], the orbitofrontal-amygdala circuit

[90], the executive functioning circuit [91]. Similarly, while
our task may be more cognitive, an important future direc-
tion is to use a task that may more actively induce frustra-
tion and requires mood regulation (e.g., a Go/No-Go task
with high difficulty [92]), which may require proper func-
tioning of the paralimbic system that regulates motivation
and affect [93]. Future works may consider these directions.

Limitations
Several limitations are important to consider in this re-
search. First, recently, it has been shown that there may
be higher false positive rates when the fMRI parametric
analyses are based on a weaker CDT in single studies,
except for FSL’s FLAME1 [94]. Our confidence in the
current results is boosted because we used FSL’s FLAME1
+ 2 to estimate the results, the peak voxel-level signifi-
cance in our results is mostly very high, Z > 3.09, p <
0.001, the effects were hypothesized rather than com-
pletely data-driven, and importantly, the results replicate
the past findings that ASD is associated with social per-
ception deficits [2–4] and disruptive behavior is associated
with DMN abnormality [42–45], while replication is a
widely accepted method for establishing true effects [68].
Nonetheless, future works should use a more stringent
CDT in order to reduce the concern of Type I error,
which will also require a larger sample as well in order to
reduce Type II error [95]. Second, out of the 31 partici-
pants with ASD, only 7 (23%) were high ODD. The sam-
ple size of this critical subgroup is relatively small and
future work should include a larger ASD sample with high
ODD to further establish the between-group findings.
Nevertheless, this subgroup was based on clinically
meaningful cutoffs, the percentage is consistent with
the prevalence of disruptive behavior disorder in
children with ASD [10], and the between-group analysis
involving the subgroup was not standalone but further
supported by the within-ASD dimensional analysis.
Third, about 35% of the participants also participated
in a prior imaging study [3] that investigated the neural
basis of ASD. Future research should recruit completely
independent samples to further test the neural basis of
ASD, although the majority (65%) of the data did not
overlap with that study and the current research pro-
vided a preliminary, yet incremental understanding that
hypoactivation in the key social perception regions can
be observed in ASD subgroups with high or low levels
of disruptive behavior.
Fourth, the current design was non-factorial and there

were no participants of high ODD without ASD; future
work can test whether the observed effect of disruptive
behavior on less DMN deactivation also holds in a non-
ASD population. Fifth, all ratings of clinical symptoms
were made by parental reports (SRS, ODD, anxiety,
ADHD), which is a limitation of the methodology; only
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one perspective of the child was obtained, and it is
possible that parents may not fully appreciate the subtle
differences in symptomatology between ASD and other
common comorbidities, such as reduced attention as a
function of ASD, not necessarily a pure deficit in atten-
tion. Future works should include both parental and
clinician ratings. Sixth, we used the biological motion
task to tap into DMN deactivation. However, the fixation
periods were relatively short and were at special loca-
tions (20 s at beginning and 16 s at the end), and the
BIO may be only moderately cognitively demanding.
Furthermore, it is primarily about DMN deactivation
and it remains unclear how the results may generalize to
DMN connectivity. Further research is needed to increase
the length of fixation periods, for example, by adding
jittered fixation periods between BIO and SCR blocks, use
a more cognitively demanding task, and should also test
whether the link between disruptive behavior and DMN
atypicality in ASD can be observed in other fMRI tasks
(e.g., [92]) or resting-state connectivity analyses (e.g.,
[96–99]).
Seventh, the current study included a sample of high

functioning individuals with ASD (IQ > 70). It is unclear
whether the findings could generalize to lower func-
tioning individuals with ASD [100]. Eighth, our sample
consists of children and adolescents 4–18 years of age,
and future works may test whether the findings could
generalize to adults with ASD [101]. Finally, all the
participants with ASD were male. Prevalence of mood
and anxiety disorders tends to be higher in girls with
ASD relative to boys with ASD, especially during ado-
lescence [102]. Future studies should expand the scope
of participants to include females with ASD to inform
gender-general or gender-specific neural correlates of
disruptive behavior in ASD.

Conclusions
Despite the limitations, the current study is the first to
investigate the neural underpinnings of disruptive be-
havior in ASD, which could lead to the development of
more precise medicine in ASD. Our results suggest that
while core ASD symptoms are related to hypoactivation
in the social perception circuitry, disruptive behavior in
ASD has a distinct neural basis that is separable from
core ASD symptoms and characterized by less deactiva-
tion in the DMN. Accordingly, differential treatments
should be provided to treat disruptive behavior in ASD.
For example, increasing DMN deactivation might be a
possible direction for developing novel neuroscience-
based interventions for disruptive behavior in ASD.
Furthermore, DMN deactivation may be used as a bio-
marker to evaluate or predict the effectiveness of be-
havioral and pharmacological treatments for disruptive
behavior in ASD.
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