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a b s t r a c t

AAV9 vector provides efficient gene transfer in all segments of the renal nephron, with minimum
expression in non-renal cells, when administered retrogradely via the ureter. It is important to restrict
the transgene expression to the desired cell type within the kidney, so that the physiological endpoints
represent the function of the transgene expressed in that specific cell type within kidney. We hypoth-
esized that segment-specific gene expression within the kidney can be accomplished using the highly
efficient AAV9 vectors carrying the promoters of genes that are expressed exclusively in the desired
segment of the nephron in combination with administration by retrograde infusion into the kidney via
the ureter. We constructed AAV vectors carrying eGFP under the control of: kidney-specific cadherin
(KSPC) gene promoter for expression in the entire nephron; Naþ/glucose co-transporter (SGLT2) gene
promoter for expression in the S1 and S2 segments of the proximal tubule; sodium, potassium, 2 chloride
co-transporter (NKCC2) gene promoter for expression in the thick ascending limb of Henle's loop (TALH);
E-cadherin (ECAD) gene promoter for expression in the collecting duct (CD); and cytomegalovirus (CMV)
early promoter that provides expression in most of the mammalian cells, as control. We tested the
specificity of the promoter constructs in vitro for cell type-specific expression in mouse kidney cells in
primary culture, followed by retrograde infusion of the AAV vectors via the ureter in the mouse. Our data
show that AAV9 vector, in combination with the segment-specific promoters administered by retrograde
infusion via the ureter, provides renal nephron segment-specific gene expression.
© 2018 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Adeno-associated viral (AAV) vectors have become one of the
most attractive tools for in vivo gene transfer in translational, as
well as basic research studies [1]. AAV as a wild-type virus or as a
gene-transfer vector does not cause any disease in humans. Recent
advances in AAV vector production methods offer preparation of
clinical grade AAV vectors, consistently and cost effectively [2e4].
AAV vectors provide sustained long-term gene expression with
minimal immunological consequences [5,6]. Systemic administra-
tion of AAV9 vector transduces various organs such as liver, heart,
lung and skeletal muscle efficiently but provides very low trans-
duction in kidney [6e11].

Several AAV serotypes and routes of administration in combi-
nation with kidney specific promoter have been attempted to

improve AAV vector-directed gene transfer to the kidney. Systemic
administration of AAV1 carrying G6PAse-a provided gene expres-
sion in hepatocytes and kidneys that alleviated metabolic abnor-
malities in a mouse model of type 1a glycogen storage disease [12].
AAV9 carrying kidney-specific cadherin (KSPC) promoter express-
ing hepatocyte growth factor provided gene expression in the
mouse kidney and liver after systemic administration in COL4A3-
deficient mice, which attenuated tubulointerstitial fibrosis and
repressed fibrotic markers [13]. In both studies, in spite of low renal
transduction by AAV9 or AAV1 vector, the therapeutic benefits were
achieved largely due to superior hepatic gene expression that acted
in an endocrine fashion on the kidney. Subsequently, Ito et al., 2008
[14] demonstrated that the intra pelvic injection of AAV2 vector
provides expression predominantly in the renal medulla. To
improve the transduction in kidney epithelial cells Chung et al.,
2011 [15] administered AAV vectors by retrograde ureteral infusion
and showed that AAV8 and AAV9 transduce kidney cells efficiently
when compared with other AAV serotypes tested. In previous
studies we analyzed the magnitude and distribution of gene
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expression to show that administration of AAV9 vector by retro-
grade infusion via the ureter provides efficient gene transfer to
renal proximal tubule (PT), distal convoluted tubule, and collecting
duct (CD) cells with minimum off-target gene expression [11].
Within the kidney, AAV9 administered by retrograde infusion via
the ureter provided efficient gene transfer to renal cells including
PT, distal convoluted tubule, collecting duct cells, and podocytes
[11]. Moreover, retrograde infusion via the ureter circumvented the
extra-renal gene expression by AAV9 vector in spite of bearing the
ubiquitously active CMV promoter. The renal nephron consists of
several segments, each with distinct function to orchestrate overall
fluid and electrolyte balance [16]. The distinct function of each
nephron segment is attributed to the unique gene expression
profiles exhibited by the epithelial cells in the specific nephron
segments. Therefore, it is important to express the gene of interest
in the desired cell type within the kidney, so that the renal func-
tional parameters measured will represent the function of the gene
expressed in the desired cell type within kidney. We hypothesized
that use of the promoter of the gene that is expressed exclusively in
the desired nephron segment such as, KSPC [17], SGLT2 [18], NKCC2
[19], and E-CAD [20], provides preferential gene expression in
entire nephron, PT, TALH, and CD, respectively.

In this study we generated AAV vectors encoding eGFP gene
under the control of nephron segment specific promoters KSPC,
SGLT2, NKCC2, or ECAD and determined the distribution of gene
expressionwithin the kidney following retrograde ureteral infusion
of AAV9 vector carrying the promoter constructs.

2. Methods

AAV vectors: The AAV vector pAAVCMVeGFP, harboring the
cytomegalovirus (CMV) promoter driving the expression of eGFP
[11] was used to generate the sets of AAV vectors carrying kidney-
specific promoters encoding eGFP (Fig. 1). The kidney specific
promoters were PCR-amplified from themouse genomic DNA using
the primers (Table 1) with appropriate restriction sites at the 50 and
3'ends:1.3 kb KSPC promoter (GeneBank: AF118228.1) with NotI
and HindIII; 1.1 kb SGLT2 promoter (GeneBank: AJ292928.1) with
BsrgI and KpnI; 469 bp NKCC2 promoter (GeneBank: U45313.1)
with XbaI and HindIII; and 1.25 kb ECAD promoter (GeneBank:
AY566874.1) with XbaI and HindIII restriction sites at 50 and 30 ends
respectively. The PCR amplicons were then inserted in place of CMV
promoter in pAAVCMVeGFP using standard molecular biology
protocols to create the plasmids pAAVKSPCeGFP, pAAVAGLT2eGFP
pAAVNKCC2eGFP or pAAVECADeGFP (Fig. 1). The 1.1 kb SGLT2
promoter is similar to the one described before [18], except that it
contains only 400 bp of the 50 untranslated region and includes an
HNF1a binding site, crucial for the transcription form the SGLT2
promoter [21]; the remaining sequence includes the first exon, first
intron, and part of the second exon with the starting codon ATG
present in the first exon, mutated to AGG to inactivate the gene
expression from the endogenous starting codon. Reporter gene
expression from each of the promoters was confirmed by transient
transfection into HEK 293 cells before proceeding to packaging into
AAV9 for in vivo studies. Recombinant AAV vector genomes were
packaged into AAV9 capsids by triple transfection method in HEK
293 cells [22,23]. AAV vectors were purified by ammonium sulfate

Fig. 1. Diagrammatic representation of the segments of the nephron modified from Nguyen et al., 2012 [42] and choice of promoters for segment-specific gene expression and AAV
vector promoter constructs. PT¼ proximal tubule, DL¼ descending limb of the loop of Henle, AL¼ ascending limb of the loop of Henle, TALH¼ thick ascending limb of the loop of
Henle, MD¼macula densa, DCT¼ distal convoluted tubule, CNT¼connecting tubule, CD¼ collecting duct, CMV¼ cytomegalovirus, eGFP¼ enhanced green fluorescent protein, SV-
pA¼ Simian virus 40 polyadenylation signal sequence, ITR¼ inverted terminal repeat sequence, KSPC¼ kidney-specific cadherin, SGLT2¼ sodium-glucose cotransporter 2,
NKCC2¼ sodium potassium 2-chloride cotransporter, ECAD¼ e cadherin.
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fractionation and iodixanol gradient centrifugation. Titers of the
AAV vectors (viral genome particles/ml; vgp/ml) were determined
by quantitative real-time PCR [23,24].

Preparation of primary cultures of mouse PT and CD cells:
Mouse PT and CD cells were isolated from the mouse kidney using
the Miltenyi Biotec's Magnetic-Activated Cell Sorting (MACS)
technology. We used biotinylated Lotus tetragonolobyus lectin
(Vector #B-1325) for the separation of PT cells and Dolichos biflorus
agglutinin (Vector #B-1035) for CD cells. The purity of the cells
prepared was assessed by immnuofluorescence staining using an
antibody to SGLT2 (a marker protein of PT cells, S1 and S2 seg-
ments) and an antibody to a-ENaC (a marker protein of CD cells).

Animal procedure: All animal protocols used in this study were
conducted in accordance with the National Institute of Health
approved by the Institutional Animal Care and Use Committee at
the George Washington University. C57BL/6 mice (8e10 weeks old
weighing ~ 20 g) were purchased from the Jackson Laboratory (Bar
Harbor, ME). Infusion of AAV vectors by retrograde infusion via the
ureter was carried out as described previously [11]. The mice were
anesthetized with an intraperitoneal injection of pentobarbital
sodium (50mg/kg) and placed in a supine position and the legs
taped down on a heated board to maintain their body temperature
at 37OC. For all procedures, the depth of anesthesia was monitored
by foot-pinch reflex. An abdominal incision was made between the
point of the xyphoid cartilage and the navel and the ureter was
located and gently dissected out. The distal portion of the ureter
closest to the bladder and the renal artery supplying the target
kidney were clamped off with micro-venous clips. Using a tuber-
culin syringe fitted with a 33-gauge needle, the ureter was then
punctured. The needle was temporarily and snugly ligated in place
using a 6-0 silk suture to prevent leakage. After the urinewas gently
aspirated out, the tuberculin syringe was replaced with another
containing approximately 100 mL of the AAV vector (10 1̂1 viral
genome particles) and the solution was slowly retrogradely injec-
ted towards the kidney via the ureter. The needle was withdrawn
and a micro-venous clip was placed proximal to the injection site
on the ureter to prevent leakage. The arterial and the ureteral clips
were maintained for 30min to attain maximum exposure to the
infusion. The arterial and ureteral clips were then sequentially
removed and the ureter was inspected for any evidence of leakage.
The abdominal contents were replaced in reverse order and the
incision site was closed using a double layer of 6-0 silk sutures for
the muscle and skin.

Immunofluorescence: eGFP expression in mouse kidneys was
detected by immunofluorescence analysis, as described previously
[11]. Two weeks following vector administration, the kidneys were
collected and fixed in 3.8% para-formaldehyde for 1 h at 4 �C. After
washing with PBS (3 times, 5min each), the tissues were equili-
bratedwith 30% sucrose in PBS overnight. Six mmcryosections were
immunostained for eGFP using a chicken anti-GFP antibody (Aves
Labs Inc. Tigard, Oregon). Biotinylated Lotus tetragonolobus

agglutinin, which binds strongly to the brush border membrane of
the renal PT cells and weakly to the intercalated cells of the CD, was
used to distinguish PTs and CDs from other nephron segments.
Nuclei were stained with 40,6-diamidino-2-phenylindole.

3. Results and discussion

Renal PT and CD cell preparations were validated by immuno-
histochemical analyses using antibodies to SGLT2, a marker for S1
and S2 segments of renal PTcells, and a-ENaC, a marker for CD cells.
Imunohistochemical analyses showed that the renal PT cells were
positive for the expression of SGLT2 and negative for the expression
of a-ENaC (Fig. 2). By contrast, the CD cell preparations were pos-
itive for the expression of a-ENaC and negative for SGLT2 (Fig. 2).
These results validated the identity of the mouse PT and CD cell
preparations.

We used freshly prepared mouse PT and CD cells to test the
expressions from each of the promoter constructs. We transduced
primary PT or CD cells with each of the AAV vector promoter con-
structs. Three days following AAV transduction, the cells were
prepared for immunofluorescence staining to detect the expression
of eGFP. Results show that the CMV promoter provided strong GFP
expression in PT and CD cells, as anticipated (Fig. 3). The KSPC
promoter provided expression in both PT and CD cells. SGLT2
promoter construct provided expression in PT cells but not in CD
cells. Expression from NKCC2 promoter was neglible in PT and CD
cells, as expected because NKKC2 is strongly expressed in the thick
ascending loop of Henle [25]. ECAD promoter provided expression
in the CD but not in the PT cells.

To test the specificity of gene expression from the four pro-
moters in vivo, we injected each of the AAV vector type into the
mouse kidney by retrograde ureteral infusion (8 week old C57Bl/6
mice, 10̂ 11 vgp/mouse). Two weeks following the vector infusion,
kidney sections were prepared for immunofluorescence staining.
Results show that all four AAV vectors provided gene expression in
the kidney (Fig. 4). Double immunofluorescence staining, using the
antibodies against the eGFP and biotinylated LTA, was used to
demonstrate the regions of AAV-mediated gene expression by the
each of the promoter constructs.

Recently we reported that systemic administration of AAV9
vector in mice provides preferential transduction in liver, pancreas,
skeletal muscle and heart but not in kidneys. However, retrograde
infusion of AAV9 via the ureter provides efficient transduction in all
segments of the nephron from CD cells to PT cells [11]. In order to
achieve gene expression in the desired cell type in the nephron
segment, we incorporated panels of promoters of the genes that are
known to preferentially express in specific segments of the
nephron.

Cadherins are calcium-dependent cell adhesion molecule,
which also mediate signal transduction, morphogenesis, and dif-
ferentiation [26,27]. Over 100 different types of cadherins are
expressed in vertebrates [28], two classical type I cadherins,
epithelial cadherin (ECAD) and neural cadherin (NCAD) [20], and an
atypical Ksp cadherin (KSPC) are expressed in the kidney [17].
Within the kidney NCAD is expressed predominantly in the PT
epithelial cells, whereas ECAD is expressed in the distal convoluted
tubule and CD cells [20,29]. KSPC is expressed in all segments of the
nephron, from proximal to distal tubules epithelial cells, and in the
parietal epithelium of Bowman's capsule; however, it is not
expressed in renal interstitial cells, blood vessels, and glomerular
tufts [17,20,30,31]. Transgenic mice carrying 1.3 kb KSPC promoter
provided uniform distribution of kidney specific gene expression
[31]. Systemic administration of AAV9 carrying 1.3 kb KSPC pro-
moter provided gene expression in kidney and liver [32]. And hence
we anticipated that retrograde infusion via the ureter of AAV9

Table 1
Primers used for PCR amplification of each promoter. The restriction sites are shown
in bold. Additional 6 nucleotides (shown in lower case) are added at the 5'end the
primers for efficient digestion by the restriction enzymes.

Promoter Primers

KSPC Fw: 5'atctgaGCTAGCAGCTTGCTCTGCCATGGGAAGG
Rv: 5'atctgaAAGCTTGCAAATTTGGCTTAGGTGGGGCGAG

SGLT2 Fw: 5'atctgaTGTACAAGAGAAAGTAGAAAATATTTGGGT
Rv: 5'atctgaAAGCTTGGTACCTATTGGTTCTGAACACAGACTG

NKCC2 Fw: 5'atctgaTCTAGAAATATGTGAGGCCCTGGGTTCG,
Rv: 50atctgaAAGCTTATCCAGCAGCCTTCTTCTGAGC

ECAD Fw: 5'atctgaTCTAGAAGCTTGCTCTGCCATGGGAAGG
Rv: 5'atctgaAAGCTTCAGACGCCGAGCAAACACTG
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vector carrying KSPC promoter would provide expression in the
entire nephron, whereas ECAD promoter would provide expression
in the CD cells. Immunofluorescence analyses showed that the
KSPC promoter provided the GFP expression in LTA positive PTcells,
LTA negative cells as well as the intercalating cells in the CDs that
were lightly positive for LTA. GFP expression was not observed in
the liver with the AAV9 carrying KSPC promoter administered by
retrograde infusion via the ureter (data not shown). ECAD promoter
provided the GFP expression only in the intercalated cells in the
CDs that were lightly positive for LTA, but not in any other segment
of the nephron (Fig. 4).

Sodium-dependent co-transporters specific for glucose, SGLT1
and SGLT2 are responsible for the majority of the glucose

reabsorption in the kidney [33e35]. SGLT1 and SGLT2 are expressed
in the apical side of the renal PT [36]. SGLT2 is a high capacity, low
affinity glucose transporter responsible for 90% of the glucose
reabsorption in the S1 and S2 segments of the PT, whereas SGLT1
controls high affinity low capacity reabsorption of remaining
glucose in the S3 segment of the PT [36,37]. SGLT2 is expressed at a
high level in the kidney but very low level in the other organs [36].
Rubera et al., 2004 [18] showed that the 1.1 kb SGLT2 promoter
together with the splice region that includes first exon, first intron
and part of the second intron are necessary for kidney expression
from the SGLT2 promoter. Pontoglio et al., 2000 [21] later showed
that the 400 bp promoter region that includes HNF1a binding site
along with the splice region is adequate for kidney PT specific gene

Fig. 2. Immunofluorescence staining showing the expression of marker protein for proximal tubule or collecting duct cells: Mouse proximal tubule (PT) cells or collecting duct (CD)
cells were freshly isolated from the mouse kidney via the Miltenyi Biotec's Magnetic-Activated Cell Sorting (MACS) technology. We used biotinylated Lotus tetragonolobus lectin
antibody (Vector #B-1325) for the separation of PT cells and Dolichos biflorus agglutinin antibody (Vector #B-1035) for separation of CD cells. The purity of the cells prepared was
assessed by immunofluorescence staining using the antibody to the SGLT2 (a marker protein of PT cells, S1 and S2 segments) and the antibody to a-ENaC (marker protein of CD
cells). Red stain indicates the presence of SGLT2 or a-ENaC in PT or CD cells respectively. DAPI-stained nuclei are shown in green.

Fig. 3. Confocal microscopy images showing AAV9-mediated eGFP expression in the primary cultures of mouse proximal tubule and collecting duct cells. Mouse renal proximal
tubule (PT) cells or collecting duct (CD) cells were isolated from mouse kidney and then transduced with AAV9 vector carrying enhanced green fluorescence protein (eGFP) under
the control of CMV, KSPC, SGLT2, NKCC2 or ECAD promoters. Three days after the cells were fixed. eGFP expression was detected by immunofluorescence staining (green), using
chicken anti-GFP antibody. DAPI-stained nuclei are stained blue.

L.D. Asico et al. / Biochemical and Biophysical Research Communications 497 (2018) 19e2422



expression. We used the SGLT2 promoter that contains 400 bp 50

untranslated region along with the first exon, first intron and part
of the second exon with the start codon mutated to avoid the
translation from the first exon 1, in combination with AAV9 to
achieve PT specific gene expression using AAV9 vectors. Immuno-
fluorescence analyses of the mouse kidneys that were infused with
AAV9 carrying eGFP with the SGLT2 promoter showed the
expression only in the LTA-positive renal PT cells (Fig. 4). GFP
expression from SGLT2 promoter was not detected in LTA-negative
cells.

Na-K-Cl cotransporters NKCC1 and NKCC2 isoforms mediate
coupled transport of Naþ, Kþ and Cl-ions in the ratio of 1:1:2 [38].
NKCC1 is expressed in several organs including brain, salivary
glands, heart, lung, liver, kidney, colon, and skeletal muscle
[38e40], whereas NKCC2 is expressed predominantly in the apical
membrane of TALH [19,38,41]. Deletion analyses of NKCC2 pro-
moter regions showed that the 469 bases upstream of the NKCC2
transcription start site provided maximal TALH specific gene
expression [19]. Incorporation of 469 base NKCC2 promoter in the
AAV vector delivered via the ureter by retrograde infusion provided
eGFP expression in the epithelial cells in the TALH of the nephron
(Fig. 4).

These results show that AAAV9 administered retrogradely via
the ureter can be engineered with the appropriate promoter to
achieve expression in the desired segment of the nephron, hence
can be very useful tools to study the role of gene expression in a
segment of interest in the nephron in vivo.
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