Intersex wildlife as sentinels for human health and endocrine disruption near Superfund sites: A Systematic Review

Olivia Anderson, MPHc\(^1\) Melissa Perry, PhD\(^1\)

1. Department of Environmental and Occupational Health, The George Washington University Milken Institute School of Public Health, Washington, DC, USA

Study Question
Do wildlife in contaminated waters near Superfund sites have a higher prevalence/severity of intersex compared to the same wildlife farther away from Superfund sites?

Scope & Introduction

Intersex in wildlife is often used as sentinels for human health.

Intersex is the occurrence of sexual characteristics that are not exclusively female or exclusively male. It is a spectrum of conditions that involve the occurrence of both male and female reproductive tissues, including abnormalities in gonadais, sex chromosomes, and ambisexual gonads. Intersex is a significant public health concern because of the potential health impacts associated with endocrine disruption caused by exposure to certain chemicals, such as those found at Superfund sites.

Superfund Chemicals
- Endocrine disrupting chemicals (EDCs) are long-lasting and known to have reproductive and endocrine issues, even at low doses.
- EDCs are widespread throughout US watersheds at both high and low doses and are often present in ecosystems.
- Often emitted Superfund Sites (EPA designated toxic waste sites)

Methods

Study Search
- Search PubMed, Scopus, ProQuest, Web of Science, Google Scholar databases
- Exposure: "Superfund" or "CERCLA"
- Outcome: "intersex" or "gonad histology" or "hormone disturbance"
- "intersexuality" or "gonadal disorder"

Study Selection
- Multiple passes with abstract read then full read
- Inclusion: gonad histology or histopathology done on Superfund site in title or abstract, wildlife animals
- Exclusion: not original research, book section, toxicological studies, human outcomes, outside US, not English

Risk of bias
- Possible ratings of "low", "probably low", "probably high", "high", or "not applicable"
- Each study evaluated pre-specified factors: sampling strategy, bias, confounding, comparison group, exposure assessment, incomplete outcome data, etc.

Quality of evidence
- Upgraded or downgraded full body of evidence
- Started at "moderate quality" and were upgraded (+1, +2), downgraded (-1, -2) or neutral for a value of 0.
- Prespecified factors: risk of bias, inconsistency, imprecision, inapplicability, etc.

Strength of evidence
- The possible rating was "sufficient evidence", "limited evidence", "inadequate evidence", or "evidence of a lack of toxicity"
- Considers quality of evidence, direction of effect, confidence of effect, other compelling attributes of the data

Results

Quality of evidence:
- Low
 - Lack of control sites, high risk of confounding and biasing
 - Strength of evidence: Limited Evidence
 - Overall small positive relationship trend, no inverse

Discussion

Knowledge Gaps
- No standard definition for proximity to a Superfund site
- Unknown background levels of intersex for each species
- Long-term impacts of climate change on intersex
- Lack of control sites with surveillance papers

Recommendations
- Standardize methods: gonad histology, severity rankings, etc.
- Establish confounders
- Meta-analysis with current studies by species
- Examine links with certain EDC chemicals from Superfund sites
- Look for studies with human health concern: ex. breast cancer risk in the Great Lakes

Conclusions

Limitations of the systematic literature review
- First looking at this body of evidence
- Only English and in US

Strengths of the systematic literature review
- Multiple animal species
- Strong sampling of evidence

Ecological application of Navigation Guide

- Limited overall strength of evidence: small positive trend of higher intersex near Superfund sites
- Implications for an indicator of ecological health, watershed health, and human health
- More research needed: meta-analysis with data from this review, species-specific studies
- Address limitations like adding other disruption indicators and multiple chemical exposures

References

LaPlaca et al., 2017. Endocrine Disruption in Largemouth Bass (Micropterus dolomieu) from a Pesticide-Contaminated Reserve.

Lee et al., 2015. Biological Effects of Complex Estrogenic and other Endocrine Active Mixtures in Aquatic Systems.

Reader et al., 1998. Environ Health Perspect. 106(8): 261–266; doi:10.1289/ehp.9808261

Acknowledgements & Contact Information

Thanks to my advisor Melissa Perry for her support and guidance on the project and Dr. Lance Price for his guidance and help with using the Navigation Guide.

Thanks to the librarians at Himmelbafl for helping me with navigating search databases and creating search terms.

Thanks to my friends and family, especially my parents, for their support through this project.

Contact information:
Olivia Anderson, oganderson@gwmail.gwu.edu