Differential mRNA expression in ectopic germinal centers of myasthenia gravis thymus

Manjistha Sengupta¹, Bi-Dar Wang², Norman Lee², Gary Cutter³, Linda Kusner², Henry Kaminski¹

Dept. of Neurology¹, Dept. of Pharmacology and Physiology², The George Washington Univ., Univ. of Alabama, Birmingham³

CONCLUSIONS:

- Thymus samples with GC demonstrate unique gene expression pattern
- The differentially expressed transcripts belong to pathways involved in immune response, cell signaling, cellular movement, cell proliferation and apoptosis. These functions are important for GC formation
- GC B-cell specific RGS13 expression is higher in GC positive group and is reciprocally regulated by miRNA 139-5p and 452-5p

BACKGROUND: Myasthenia gravis (MG) is an autoimmune neuromuscular disorder resulting in weakness of voluntary muscles. It is caused by antibodies directed against proteins present at the post-synaptic surface of neuromuscular junction. A characteristic pathology of patients with early onset MG is thymic hyperplasia with ectopic germinal centers (GC). However, mechanisms that trigger and maintain thymic hyperplasia are poorly characterized.

OBJECTIVE: We assessed the differential mRNA expression profiles in MG thymus samples with and without GC. We evaluated pathways involved in GC maintenance. We studied expression and regulation of GC specific transcript RGS13.

METHODS: Thymic specimens collected during the course of the NIH-supported study of thymectomy (MGTX, U01 NS4268) were used for histological analysis and grouped based on presence (GC positive) or absence of GC (GC negative). Transcription profiling was done using GeneChip® Human Transcriptome Array 2.0. Partek Genomic Suite 6.6 and Transcriptome Analysis Console 2.0 programs were used to identify candidates that were differentially expressed. ANOVA p-value <0.05 and FDR<0.05 was determined as significant. Further validation by qRT-PCR was done. IHC was performed to study localization of selected proteins. Gene ontology (GO) enrichment analysis and Ingenuity Pathway Analysis (IPA) core analysis was used to identify pathways, molecular and cellular functions of the transcripts with respect to GC formation.

Fig.1 Germinal activity in MG thymus

Adapted from B. A. Heesters et al., 2014, Nature Reviews Immunology

Fig.2 Distinct mRNA expression pattern in MG thymus samples with ectopic GC

Differential mRNA expression profiles of thymus samples with and without germinal centers. (A) Principal Component Analysis plot (Blue GC positive, Red GC negative) and (B) Hierarchical clustergram (ANOVA p<0.05, no fold change). GC positive n=7; GC negative n=6.

Fig.3 Differentially expressed genes belong to functional pathways important in GC formation

Cell Communication

Cellular Movement and ECM Reorganization

Immune Response

Fig.4 RGS13 is overexpressed in ectopic GC

(A) Increase in RGS13 expression as determined by qRT-PCR is associated with decrease in (B) miR 139-5p and (C) miR 452-5p in GC positive samples. (D) Immunohistochemistry of thymus samples using RGS13 antibody confirms its expression in GC.

Fig.5 RGS13 expression is regulated by miRNAs

(A) 3’UTR of RGS13 gene has predicted binding sites for miR-139-5p and miR-452-5p. (B) qRT-PCR analysis RGS13 expression in Raji cells post transfection with miRNA mimics. p<0.05 is considered as significant.

NIH National Center for Medical Rehabilitation Research