Acute Cardiac Air Embolism

Leslie Billello
Brian Gacioch
James P. Phillips
George Washington University

Follow this and additional works at: https://hsric.himmelfarb.gwu.edu/smhs_emerg_facpubs
Part of the Emergency Medicine Commons, and the Trauma Commons

APA Citation

This Journal Article is brought to you for free and open access by the Emergency Medicine at Health Sciences Research Commons. It has been accepted for inclusion in Emergency Medicine Faculty Publications by an authorized administrator of Health Sciences Research Commons. For more information, please contact hsric@gwu.edu.
Acute Cardiac Air Embolism

Leslie A. Bilello, MD*
Brian Q. Gacioch, MD, EMT-P†
James P. Phillips, MD‡

*Harvard Medical School, Beth Israel Deaconess Medical Center, Department of Emergency Medicine, Boston, Massachusetts
†Medical Corps, United States Air Force, Malcolm Grow Emergent Care Center, Joint Base Andrews, Maryland
‡George Washington University Hospital, Department of Emergency Medicine, Washington, District of Columbia

Section Editor: Shadi Lahham, MD
Submission history: Submitted September 18, 2017; Revision received December 8, 2017; Accepted December 13, 2017
Electronically published January 12, 2018
Full text available through open access at http://escholarship.org/uc/uciem_cpcem
DOI: 10.5811/cpcem.2017.12.36422
[Clin Pract Cases Emerg Med. XXXX;X(X):X–X.]

CASE PRESENTATION
An 84-year-old female status post-Mohs micrographic surgery (MMS) presented to the emergency department (ED) for evaluation after a syncopal episode. Surgical excision of a scalp basal cell carcinoma occurred immediately prior to arrival (Image 1). Hemostasis was achieved by both cautery and direct pressure. Within one minute, patient experienced a 10-second syncopal episode and was hypoxic (64% on room air). The patient arrived via ambulance with blood pressure 108/56 mm Hg and 92% on 15 liters per minute via non-rebreather. Crepitus was appreciated during cardiac auscultation. We performed a focused cardiac ultrasound (Image 2).

DIAGNOSIS
Point-of-care cardiac ultrasound suggested acute air embolism with right heart strain as the cause of the patient’s syncope. An air embolism is a rare but serious complication of any procedure that may involve venous or arterial vasculature. Air emboli in the setting of MMS has previously been cited in a dermatology case report.1 It has also been recorded in head and neck surgery, dental surgery, and is a known complication of seated-position neurosurgical operations.2-5 Complications include, but are not limited to, coronary or cerebral infarct, complete cardiovascular collapse, and death.6

Image 1. Superficial basal cell carcinoma excision site on the parietal scalp. The procedure also required an area of deep bone curettage (black arrow).

Image 2. A subcostal cardiac view demonstrated normal left ventricle (LV) contractility, decreased right ventricular (RV) contractility, and RV dilation greater than 1.5 times the LV diameter. Copious hyperechoic mobile bodies were noted within the right atrium (RA) and RV (black arrow). A parasternal short view, not pictured, revealed LV septal in-bowing during systole and diastole. LA, left atrium.
To our knowledge, this is the first case within the ED setting to capture acute air emboli causing hemodynamic compromise on point-of-care ultrasound (POCUS). We placed the patient in reverse Trendelenburg while providing supplemental oxygen which lead to real-time clinical improvement with echocardiographic evidence (Image 3). Computed tomography angiogram of the chest ruled out true pulmonary embolism. This case further demonstrates the value of POCUS as a diagnostic tool in the hemodynamically unstable patient. Although clinically significant air emboli are rare, the need to consider the diagnosis is critical. Recognition should prompt treatment with supine or reverse Trendelenburg positioning while providing supplemental oxygen and consideration of hyperbaric oxygen therapy.

Image 3. Repeat subcostal view approximately 12 minutes later revealed improved, but not resolved, right ventricle (RV) dilatation, significantly decreased density of air bubbles in the RV (white arrow), trace air bubbles in the left ventricle (LV). At this time, the patient’s vital signs had normalized and her oxygen requirement was significantly decreased.

RA, right atrium; LA, left atrium.

REFERENCES