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Mixture models for undiagnosed
prevalent disease and interval-censored
incident disease: applications to a cohort
assembled from electronic health records
Li C. Cheung,a,b*† Qing Pan,a Noorie Hyun,b Mark Schiffman,b
Barbara Fetterman,c Philip E. Castle,d Thomas Loreyc

and Hormuzd A. Katkib

For cost-effectiveness and efficiency, many large-scale general-purpose cohort studies are being assembled within
large health-care providers who use electronic health records. Two key features of such data are that incident
disease is interval-censored between irregular visits and there can be pre-existing (prevalent) disease. Because
prevalent disease is not always immediately diagnosed, some disease diagnosed at later visits are actually undi-
agnosed prevalent disease. We consider prevalent disease as a point mass at time zero for clinical applications
where there is no interest in time of prevalent disease onset. We demonstrate that the naive Kaplan–Meier
cumulative risk estimator underestimates risks at early time points and overestimates later risks. We propose a
general family of mixture models for undiagnosed prevalent disease and interval-censored incident disease that
we call prevalence–incidence models. Parameters for parametric prevalence–incidence models, such as the logis-
tic regression and Weibull survival (logistic–Weibull) model, are estimated by direct likelihood maximization or
by EM algorithm. Non-parametric methods are proposed to calculate cumulative risks for cases without covari-
ates. We compare naive Kaplan–Meier, logistic–Weibull, and non-parametric estimates of cumulative risk in the
cervical cancer screening program at Kaiser Permanente Northern California. Kaplan–Meier provided poor esti-
mates while the logistic–Weibull model was a close fit to the non-parametric. Our findings support our use of
logistic–Weibull models to develop the risk estimates that underlie current US risk-based cervical cancer screen-
ing guidelines. Published 2017. This article has been contributed to by US Government employees and their work
is in the public domain in the USA.

Keywords: cervical cancer; cumulative risk estimation; HPV; Kaplan–Meier; prevalence–incidence models

1. Introduction

Screening is used to identify individuals with asymptomatic disease or disease precursors for effective
early intervention. A goal of ‘precision medicine’ is to develop screening guidelines that are based on
the risk of disease, given an individual’s risk factors and screening test results [1]. To inform screening
guidelines, many large-scale general-purpose epidemiologic cohort studies are being organized within
large healthcare providers who use electronic health records [2]. These providers have the benefit of
having large patients populations to recruit from, pre-existing infrastructure to support longitudinal visits,
and electronic health records to facilitate data collection. Although potentially cost-effective and efficient,
such cohorts present many challenges for analysis [3]. We consider two key features of such data that
make it inappropriate to calculate risk using standard methods, such as Kaplan–Meier methods [4] or
Cox models [5].
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First, the exact time of disease onset for an individual is unobserved, and only the partial information
of the occurrence falling between the last time observed to be disease-free and the time of diagnosis, that
is, mixed-cases interval censoring [6], is available. For approximately regular intervals, which can be
enforced in controlled trials, discrete time or Kaplan–Meier methods could be applied as approximations.
However, researchers working with data from health providers typically cannot influence the timing of
visits and patients return at intervals that are quite irregular, which render discrete-time or Kaplan–Meier
methods inappropriate to use [7].

Second, people can enter the screening program with prevalent disease at baseline that is not always
immediately diagnosed. In particular, people with missing or negative screening test results generally
do not undergo definitive disease ascertainment, such as biopsies. Consequently, among those for whom
prevalent disease was not ascertained but disease is diagnosed at future screens, it is not possible to
determine whether the disease is undiagnosed prevalent disease that occurred prior to enrollment into the
screening program or incident disease that occurred over the course of screening. Accurately estimating
risk of prevalent disease is important because clinicians are primarily concerned with the risk that disease
is present. Guidelines for referring women for immediate biopsies should be based on the prevalent
disease risk [8].

In our application, it suffices to consider prevalent disease as a left-censored point mass at time zero,
because a clinician takes little interest on the time in the past when disease detected today might have
arisen. Standard approaches to mixed cases interval censoring [9–11] do not handle a point mass at
time zero for prevalent disease. One could either set aside those with ascertained prevalent disease or
approximate ascertained prevalent disease by offsetting to a small time just after zero and then apply
traditional interval-censoring approaches. However, both of these methods would treat unascertained
prevalent disease that are diagnosed at future screens as incident disease and would result in underesti-
mating prevalent disease risks while inflating incident disease risks. For covariates, a Cox model cannot
properly separate covariate effects on prevalent disease from those for incident disease. Furthermore,
applying Kaplan–Meier and Cox model methods by ignoring the interval censoring and using time of
diagnosis to approximate time of disease onset results in biased estimates [12, 13]. In Section 2, we
demonstrate that there is an interesting pattern to this bias: The Kaplan–Meier cumulative risk estimator
generally underestimates early risks and overestimates later risks.

In this article, we propose a general family of mixture models, which we call prevalence–incidence
survival models, for estimating the cumulative risk and assessing covariate effects using data from screen-
ing cohorts assembled from electronic health records (Section 3). Prevalence–incidence models are akin
to cure mixture models [14–16], but the point mass is at zero rather than infinity. Prevalent disease
is observed for some individuals, mitigating identifiability issues that can affect cure mixture models
[17]. Identifiability of prevalence–incidence models is considered in the Appendix S1. Moreover, in
prevalence–incidence survival models, accurately identifying those at high risk of prevalent disease and
in need of immediate intervention is of primary importance, whereas, in cure models, it is not often crucial
for clinicians to differentiate long-term survivors from those who are cured.

We employed the expectation-maximization (EM) algorithm [18] for inference in parametric
prevalence–incidence survival models. All details are presented for the useful special case where preva-
lent disease is modelled with logistic regression and incident disease is modelled with a Weibull survival
model, which is supported by the multi-stage theory of carcinogenesis [19]. We also present a non-
parametric cumulative risk estimator for the marginal model that has no covariates; this can be used
to check the distribution assumptions of the parametric prevalence–incidence survival models. Our R
package, PIMixture (https://dceg.cancer.gov/tools/analysis/PIMixture), provides the non-parametric esti-
mator, the logistic–Weibull model, and various other parametric prevalence–incidence models. We use
simulations to examine the robustness of our cumulative risk estimators when the logistic–Weibull model
is misspecified (Section 4).

In section 5, we use the Kaiser Permanente Northern California (KPNC) cervical cancer screening
cohort to estimate the cumulative risk of cervical precancer and cancer following HPV-positive/Pap-
negative baseline screening results. The KPNC cohort consists of 1.4 million women screened from
2003–2013 and was assembled by linking various electronic records of patient information, test results,
and disease outcomes [20]. Not all women with HPV-positive/Pap-negative results underwent definitive
disease ascertainment at baseline, so while only 0.18% of these women had precancer/cancer diagnosed
at baseline, precancer/cancer could have been present at baseline for another 2.05% of these women.
Compared with the non-parametric estimates, the Kaplan–Meier estimates show the expected under/over
estimation. Estimates from the logistic–Weibull model agree with the non-parametric estimates and
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demonstrates that the logistic–Weibull model can estimate prevalent disease risk even when disease is
rarely ascertained at baseline. We illustrate how we used the risk estimates from the logistic–Weibull
model to inform the current U.S. cervical cancer screening guidelines [21,22]. In Section 6, some useful
extensions of prevalence–incidence models are discussed.

2. The behavior of the Kaplan–Meier estimator in screening data

While originally proposed for analysis of mortality data, Kaplan–Meier methods are often used to esti-
mate disease-free survival by using the time of diagnosis to approximate time of disease onset [13]. This
approximation is reasonable for symptomatic disease, as the diagnosis time is close to the time of dis-
ease onset. However, for asymptomatic disease, the difference between time of diagnosis and time of
onset depends on the density of screening visits and the sensitivity of screening tests. In cervical screen-
ing, women who test negative usually have long-term (3-year) intervals [21]. Consequently, diagnosis of
cervical precancer/cancer may lag onset by years, and Kaplan–Meier estimates based on diagnosis time
may be biased for the cumulative risk of disease onset.

Consider this simple example. For n subjects disease-free at baseline, denote the cumulative distribu-
tion of time of disease onset as F. Suppose these subjects randomly return for a single follow-up visit
with definitive disease ascertainment at one of two time points: 𝜃n subjects are seen at t1, and the remain-
ing (1 − 𝜃)n subjects are seen at time t2, where 𝜃 ∈ (0, 1) and 0 < t1 < t2. From Table I, we see that
Kaplan–Meier methods using time of diagnosis will underestimate the cumulative risk at t1 by the frac-
tion of people, 𝜃, who return at the early time point. Intuitively, disease with early onset is not detected
until later, and thus, Kaplan–Meier methods underestimates early disease risk. This underestimation can
be substantial; if for example, people are asked to return at t1 and 70% do return, then the cumulative risk
at t1 is underestimated by 30%.

Interestingly, at the later time point, t2, Kaplan–Meier methods treating diagnosis time as occurrence
time overestimates the cumulative risk when 𝜃F(t1) > 0. From Table I, it is easily seen that the amount
of overestimation is given as 𝜃F(t1){1+F(t2)}. Intuitively, we not only have the extra disease from those
whose disease onset was earlier but also the risk set contains fewer people than at the earlier time, leading
to overestimation. The amount of overestimation at t2 increases as follows

1 𝜃 increases to one. When 𝜃 is close to zero, bias is small at time t2 as almost all subjects return for
the first time at time t2. As 𝜃 increases to one, the bias in the cumulative risk at t1 shrinks while the
bias at t2 increases.

2 F(t1) increases to one. When F(t1) is zero, no events have occurred among the n subjects by t1.
Thus, for the (1 − 𝜃)n who return at time t2, time t1 can be seen as renewal of the survival process
with all subjects returning at time t2.

Note that t1 can be arbitrarily close to t2, but the Kaplan–Meier estimate at t1 and t2 can differ consid-
erably with biases in opposite directions. This is because the Kaplan–Meier estimator sees (1 − 𝜃)nF(t2)
events occurring in the very short time period between t1 and t2, with a smaller population at risk,
(1 − 𝜃)n instead of n, and thus estimates very large hazards for t2. A numerical example is presented
in Appendix S2.

The bias in the Kaplan–Meier estimator does not depend on n but only on the proportions returning at
each of the two time points, so increasing the sample size to infinity does not remove the bias. This pattern
of the Kaplan–Meier cumulative risk estimator underestimating at earlier times and overestimating at
later times persists for screening data with more than two return time points.

Table I. Performance of the Kaplan–Meier (KM) cumulative risk estimator using time
of diagnosis to approximate time of disease onset.

Time At risk Diagnosed KM cumulative risk estimate True cumulative risk

t1 n n𝜃F(t1) 𝜃F(t1) F(t1)

t2 (1 − 𝜃)n (1 − 𝜃)nF(t2) 1 − (1 − 𝜃F(t1))(1 − F(t2)) F(t2)
Note: N subjects whose time of disease onset have cumulative distribution function, F, are
randomly seen at one of two times: 𝜃n are seen at time t1 and (1 − 𝜃)n are seen at time t2.
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3. Prevalence–incidence survival models

We propose a general family of mixture models, which we call prevalence–incidence survival models.
For subjects i = 1, 2,… , n, let Ti be the time of disease onset, which is never directly observed. Let
ci = I(Ti ⩽ 0), which is the subject-specific indicator variable for prevalent disease present at the baseline
visit (time zero). Let Li be the last time the ith subject is observed to be disease-free, which is defined
only when ci is known to be zero. Let Ri be the first time that the ith subject is diagnosed with the disease.
For many subjects, ci is unobserved, and we know only that Ti ⩽ Ri. We allow Ri = ∞ to include cases
of right-censoring or when subjects with unobserved ci provide no information regarding Ti. Let xi and
zi be subject-specific vectors of covariates for prevalent and incident disease respectively.

Let 𝜽1 and 𝜽2 be disjoint vectors of parameters. Given covariates x and z, let P(T ⩽ 0; x, z) = P(c =
1; x) = 𝜋(x;𝜽1) be the probability of prevalent baseline disease (prevalence model) and P(T > t|c =
0, x, z) = P(T > t|c = 0, z) = S(t;𝜽2|c = 0, z) be the conditional survival function of time to disease onset
given that the disease is not present at baseline (incidence model). The cumulative risk can be modelled as

P(T ⩽ t; x, z,𝜽) = 𝜋(x;𝜽1) + {1 − 𝜋(x;𝜽1)}{1 − S(t;𝜽2|c = 0, z)}, t ⩾ 0, (1)

where 𝜽 = 𝜽1 ∪ 𝜽2. Thus, the cumulative risk, P(T ⩽ t; x, z,𝜽), can be seen as a mixture distribution
having mixing proportions 𝜋(x;𝜽1) and 1 − 𝜋(x;𝜽1) with component distributions P(T ⩽ t|c = 1) = 1,
a degenerate distribution among those with prevalent disease at baseline, and P(T ⩽ t;𝜽2|c = 0, z) =
1 − S(t;𝜽2|c = 0, z), the conditional failure time distribution among those without prevalent disease
at baseline.

3.1. Non-parametric estimator of the cumulative risk

In this subsection, we show how to obtain the non-parametric maximum likelihood estimate (NPMLE)
of the cumulative risk. In addition to its intrinsic value, the NPMLE can be used to assess the distribution
assumptions of parametric prevalence–incidence models with no covariates.

The NPMLE of the cumulative risk can be obtained by applying the EM-iterative convex minorant
(ICM) algorithm [23] after mapping (ci,Li,Ri) to new intervals (L′

i ,R
′
i] in three steps as followed:

1 if ci = 1, set (L′
i ,R

′
i] to the interval (0, 𝜖];

2 if ci = 0, set (L′
i ,R

′
i] to intervals (max(𝜖,Li),Ri];

3 if ci is unknown, set (L′
i ,R

′
i] to intervals (0,Ri],

where 𝜖 is half of the value of the smallest positive Li in the data set.
Because the NPMLE assumes that the survival function is one at time zero, we approximate prevalent

disease by assuming known prevalent disease occurs in the small time interval (0, 𝜖] immediately after
time zero (step 1). The estimated risk of disease prevalent at time zero is then the NPMLE cumulative
risk estimate at 𝜖. Known incident disease is mapped to time intervals after 𝜖 (step 2). We set 𝜖 to half
of the value of the smallest positive Li in the data set; however, 𝜖 can take any value between zero and
the smallest positive Li. The intuition is to use 𝜖 to assign separate time intervals to known prevalent
disease and known incident disease, as bias will ensue if the intervals overlap. The third step assigns time
intervals that span the prevalent and incident disease intervals when it is unknown whether the disease is
prevalent or incident.

We cannot directly extend methods for the NPMLE to include covariates because such an approach
assumes that the size and relationship (e.g., proportional hazards or additive risks) of the covariate effects
for incident disease also applies to prevalent disease. Instead, we suggest using prevalence–incidence
survival models when incorporating covariates.

3.2. Likelihood for prevalence–incidence survival models

Let K1 and K0 be partitions of subjects into observed and missing ci, respectively. We assume that ci is
missing at random (MAR).

When ci = 1, the subject contributes log{𝜋(xi;𝜽1)} to the log-likelihood. When ci = 0, the subject
contributes log{1−𝜋(xi;𝜽1)}+log{S(Li;𝜽2|ci = 0, zi)−S(Ri;𝜽2|ci = 0, zi)} to the log-likelihood. Finally,
when ci is unobserved, the subject contributes log[𝜋(xi;𝜽1) + {1 − 𝜋(xi;𝜽1)}{1 − S(Ri;𝜽2|ci = 0, zi)}].
Let yobs and ymis denotes the observed and missing data, respectively, contained in yi = {xi, zi,Li,Ri, ci},
for i = 1, 2,… , n. Then the observed log-likelihood is given as:

Published 2017. This article has been contributed to by US Government
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l(yobs;𝜽) =
∑
i∈K1

[ci log{𝜋(xi;𝜽1)} + (1 − ci){log(1 − 𝜋(xi;𝜽1))

+ log(S(Li;𝜽2|ci = 0, zi) − S(Ri;𝜽2|ci = 0, zi))}]
+
∑
i∈K0

log[𝜋(xi;𝜽1) + {1 − 𝜋(xi;𝜽1)}{1 − S(Ri;𝜽2|ci = 0, zi)}].
(2)

A full derivation of the observed log-likelihood from the complete data joint likelihood is given in
Appendix S3.

3.3. Inference for parametric prevalence–incidence survival models

When parametric forms are chosen for both 𝜋(x;𝜽1) and S(t;𝜽2|c = 0, z) in (1), the likelihood (2) can
be directly maximized by Newton–Raphson method [24]. However, Newton–Raphson method does not
converge for KPNC data analyses that have a large proportion of subjects (greater than 99%) with right-
censored event times, which is a situation that is not uncommon for population-based cancer screening.
For those analyses, we employ the EM algorithm [18] as followed:

Initialization Set initial values for the parameters 𝜽(0). Two useful sets of initial values are the
parameter values that maximize (2) after assuming that disease diagnosed in K0 are either
all prevalent disease, (ci = 1) or all incident disease (ci = 0). When the EM algorithm based
on these two extreme starting values converge to the same set of parameter values, that
provides additional confidence that the EM algorithm is converging to a global maximum.

Alternate between the expectation (E) step and the maximization (M) step until convergence:
E-step Use 𝜽(l) to compute the expected log-likelihood given by

Q(𝜽|𝜽(l)) =
n∑

i=1

[E(ci|yobs
i ;𝜽(l)) log{𝜋(xi;𝜽1)}

+ {1 − E(ci|yobs
i ;𝜽(l))}{log(1 − 𝜋(xi;𝜽1))

+ log(S(Li;𝜽2|ci = 0, zi) − S(Ri;𝜽2|ci = 0, zi))}],

(3)

where S(Li;𝜽2|ci = 0, zi) = 1 when i ∈ K0 and

E(ci|yobs
i ;𝜽(l)) =

{
ci ∶ i ∈ K1

𝜋(xi;𝜽
(l)
1 )

𝜋(xi;𝜽
(l)
1 )+{1−𝜋(xi;𝜽

(l)
1 )}{1−S(Ri;𝜽

(l)
2 |ci=0,zi)}

∶ i ∈ K0.
(4)

For subjects in K0, as Ri approaches zero, E(ci|yobs
i ;𝜽(l)) approaches one, reflecting the

fact that the detected disease is more likely to have been prevalent at baseline. When Ri = ∞,
then there is no information regarding the subject’s time of disease onset and the conditional
expectation of ci equals the average probability of prevalence.

M-step The updated MLE, 𝜽(l+1), are the values of 𝜽 that maximizes the expected log-likelihood
(3), which can be separated into terms containing only 𝜋(xi;𝜽1) and only S(t;𝜽2|ci = 0, zi)
as followed:

Q(𝜽|𝜽(l)) =
n∑

i=1

[E(ci|yobs
i ;𝜽(l)) log{𝜋(xi;𝜽1)} + {1 − E(ci|yobs

i ;𝜽(l))}{log(1 − 𝜋(xi;𝜽1))}]

+
n∑

i=1

{1 − E(ci|yobs
i ;𝜽(l))}{log(S(Li;𝜽2|ci = 0, zi) − S(Ri;𝜽2|ci = 0, zi))}.

This allows 𝜽(l+1)
1 and 𝜽

(l+1)
2 to be estimated separately.

The variance of �̂� is the inverse of the observed Fisher information. The variance of the cumulative
risk can be derived using the delta method:

̂Var{P(T ⩽ t; x, z, �̂�)} = ∇P(T ⩽ t; x, z, �̂�)T ⋅ Var(�̂�) ⋅ ∇P(T ⩽ t; x, z, �̂�),
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where ∇P(T ⩽ t; x, z, �̂�) is the gradient of P(T ⩽ t; x, z, �̂�).
The complementary log–log of the cumulative risk can be shown to be asymptotically normal via the

multivariate delta method (Appendix S4). Confidence limits for the cumulative risk can be constructed
on the complementary log-log scale and then converted to the cumulative risk scale.

3.4. logistic–Weibull model

A parametric prevalence–incidence survival model that is relevant to cancer screening is a mixture
of logistic regression prevalence model and Weibull regression incidence model. The prevalence and
incidence models are parameterized as

𝜋(x;𝜽1) =
exp(xT

i 𝜷)
1 + exp(xT

i 𝜷)

and

S(t;𝜽2|c = 0, zi) = exp
⎡⎢⎢⎣−

{
t

exp(zT
i 𝜸)

} 1
𝜏 ⎤⎥⎥⎦

respectively, where 𝜷 = (𝛽0, 𝛽2,… , 𝛽m1−1) and 𝜸 = (𝛾0, 𝛾2,… , 𝛾m2−1) are vectors of regression coef-
ficients and 𝜏 > 0 governs the shape of the Weibull distribution. Note that 𝜽1 = 𝜷 and 𝜽2 = (𝜸, 𝜏).
Inference for parameters, cumulative risk, odds ratios, and hazard ratios for the logistic–Weibull models
are presented in Appendix S5. The M-step is solved using just one iteration of Newton’s method. This
EM gradient algorithm [25] is locally equivalent to the EM algorithm but converges more quickly.

The Weibull survival model is supported by the multi-stage theory of carcinogenesis [19], which sug-
gests that cancer incidence has a Weibull distribution. The time of follow-up for most cancer studies is
relatively short, in the sense that time to cancer incidence is right-censored for most subjects. Given that
we expect the hazard of cancer to be monotonic over this short time scale, the Weibull incidence model
can be an adequate working model for cancer screening.

In the special case of no undiagnosed baseline disease (i.e., everyone at baseline undergoes definitive
disease ascertainment), then the likelihood (2) can be factored into prevalence and incidence model parts,
and thus, parameters in each model can be estimated separately. For the logistic–Weibull model, this
means that the logistic regression and Weibull regression can be conducted separately to obtain their own
parameter estimates.

4. Performance of the logistic–Weibull model

We evaluated the performance of the logistic–Weibull prevalence–incidence survival model for cases
when the model was correctly specified and for cases when it was misspecified. Within each set-up, 1,000
simulation data sets, each containing 10,000 patients were used. Because most applications will use the
same covariates for both the prevalence and incidence models, we set xi = zi = (x1i, x2i), where x1i
and x2i were drawn from independent Bernoulli(0.5) and Uniform(0,1) distributions, respectively. Using
different sets of covariates did not change the overall conclusions of the simulations.

For simulations under a correctly specified logistic–Weibull model, prevalent disease followed a
logistic regression model and time to onset of incident disease followed a Weibull regression model:

𝜋(x;𝜽1) =
exp(−3.5 + .5x1i + x2i)

1 + exp(−3.5 + .5x1i + x2i)

and

S(t;𝜽2|c = 0, z) = exp

{
−
(

t
exp(3.5 − .5x1i − .5x2i)

)2
}

.

For simulations under a misspecified logistic–Weibull model, prevalent disease followed a probit
regression model and time to onset of incident disease followed a log–logistic survival model:
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𝜋(x;𝜽1) = Φ(−2 + .35x1i + .5x2i)

and
S(t;𝜽2|c = 0, zi) =

1
1 + t2 exp{−(4.3 + 1.5x1i + 2x2i)}

,

where Φ is the cumulative distribution function of the standard normal distribution.
For each subject, an indicator variable for whether disease was ascertained at baseline was drawn

from an independent Bernoulli distribution. We examined the performance of the prevalence–incidence
model while varying the levels of disease ascertainment at baseline: 90% – high ascertainment, 50%
– moderate ascertainment, and 10% – low ascertainment. Following baseline, time to each subsequent
disease ascertainment followed a Gamma(3,1) distribution, with no disease ascertainment after time 20.
The amount of right-censoring in the data varied from 63% to 69% for each of the simulation set-ups.
Confidence intervals for the cumulative risks were obtained by constructing confidence limits on the
asympotically normal complementary log–log cumulative risk scale and converting those confidence
limits to the cumulative risk scale.

When correctly specified, the logistic–Weibull prevalence–incidence model performed well regardless
of the level of disease ascertainment at baseline, with unbiased parameter and cumulative risk esti-
mates and good coverage. Table II gives the results of the logistic–Weibull model under low disease
ascertainment at baseline.

Table III shows the result of fitting a misspecified logistic–Weibull prevalence–incidence survival
model to a population where prevalent baseline disease followed a probit regression model and time to

Table II. Performance of the logistic–Weibull prevalence–incidence
model when the model is not misspecified and with low disease
ascertainment at baseline.

Parameter True Percentage bias ASE ESE CP

𝛽0 −3.5 −0.25 0.13 0.13 0.952
𝛽1 0.5 0.86 0.10 0.10 0.943
𝛽2 1.0 0.26 0.18 0.18 0.952
𝛾0 3.5 0.06 0.028 0.028 0.951
𝛾1 −0.5 0.08 0.021 0.022 0.942
𝛾2 −0.5 −0.11 0.034 0.034 0.960
𝜏 0.5 0.38 0.0082 0.010 0.956
P(T = 0) 0.076 −0.12 0.0049 0.0048 0.954
P(T = 1) 0.080 0.02 0.0048 0.0047 0.952
P(T = 3) 0.109 0.19 0.0045 0.0046 0.949
P(T = 5) 0.166 0.17 0.0050 0.0051 0.946
P(T = 10) 0.386 −0.08 0.0069 0.0069 0.949

Note: 𝛽0, 𝛽1, and 𝛽2 are coefficients for the logistic regression portion of the
model; 𝛾0, 𝛾1, and 𝛾2 are regression coefficients for the Weibull scale and 𝜏 is
the inverse of the Weibull shape. P(T = t) is the cumulative risk at time t for
those with a specific set of covariates. Percentage bias is negative to denote
underestimation and positive to denote overestimation. ASE, asymptotic
standard error; ESE, empirical standard error; CP, coverage probability.

Table III. Performance of the misspecified logistic–Weibull prevalence–incidence model under high and low
disease ascertainment at baseline.

High ascertainment Low ascertainment

Parameter True Percentage bias ASE ESE CP Percentage bias ASE ESE CP

P(T = 0) 0.081 −0.9 0.0039 0.0038 0.952 −8.3 0.0045 0.0044 0.726
P(T = 1) 0.082 0.7 0.0039 0.0038 0.949 −5.9 0.0045 0.0043 0.830
P(T = 3) 0.090 4.8 0.0039 0.0039 0.815 0.5 0.0043 0.0042 0.963
P(T = 5) 0.106 6.7 0.0041 0.0040 0.563 4.5 0.0044 0.0042 0.812
P(T = 10) 0.173 3.8 0.0051 0.0049 0.748 3.9 0.0053 0.0051 0.748

Note: P(T = t) is the cumulative risk at time t for those with a specific set of covariates. Percentage bias is negative to
denote underestimation and positive to denote overestimation. ASE, asymptotic standard error; ESE, empirical standard
error; CP, coverage probability.
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Table IV. Percent bias and coverage probability (CP) for the non-parametric cumu-
lative risk estimate under different levels of disease ascertainment at baseline: high
(H), moderate (M), and low (L).

Parameter True Percentage bias (H) Percentage bias (M) Percentage bias (L)

P(T = 0) 0.076 0.08 −0.03 −0.55
P(T = 1) 0.078 0.05 −0.11 −0.10
P(T = 3) 0.096 0.11 0.03 0.01
P(T = 5) 0.130 0.03 0.15 0.12
P(T = 10) 0.280 −0.06 −0.05 0.05

Note: Percentage bias is negative to denote underestimation and positive to denote overesti-
mation.

onset of incident disease followed a log–logistic survival model. While coverage can be poor, the bias
in the cumulative risk was below 9% at all time points. Under high baseline disease ascertainment, there
was virtually no bias at early time points as logit and probit link functions often yield very similar out-
puts. The misspecified survival model resulted in biased cumulative risks at later times, with the greatest
amount of overestimation at time 5.6 (6.76%). When there was less data on the baseline disease status,
as in the case of low baseline disease ascertainment, the misspecified survival model had a greater effect
on bias at early time points, with the baseline disease risk underestimated by 8.3%. At later times, the
misspecified survival model resulted in overestimating the cumulative risk, with the greatest amount of
overestimation at time 6.9 (5.4%).

We also applied the methods described in Section 3.1 to the simulation data to show that the bias for
the NPMLE cumulative risk estimator was less than 1%, regardless of the level of disease ascertainment.
These results are presented in Table IV.

5. Application to women who test HPV-positive/Pap-negative

The most common abnormal screening result at KPNC is HPV-positive but Pap-negative [22]. It is the
most challenging abnormality to manage because the Pap test might have missed precancer/cancer, but
more likely, the HPV infection might naturally clear without intervention. Accurately estimating the
cumulative risk of cervical intraepithelial neoplasia grade 3 and cancer (CIN3+), that is, precancer/cancer,
is an important step in developing appropriate management guidelines. We compared the cumulative risk
estimates of CIN3+ obtained using different methods. We also compared the overall and age-stratified
risk curve of HPV-positive/Pap-negative women to the risk curves of other abnormal results for which
management strategies are well established. We assumed that prevalent disease status was MAR given the
baseline cotest result, because whether women have definitive disease ascertainment at baseline depended
primarily on the KPNC protocols for their baseline cotest result.

From 2003–2013, 34,261 women age 30–65, with no prior history of screening abnormalities, pre-
cancers, or treatments, tested HPV-positive/Pap-negative at their first ‘cotesting’ (testing with both HPV
and Pap) screen. According to KPNC protocols, these women would have been told to forgo immediate
colposcopy and undergo a repeat cotesting screen in 1 year, where if they tested either HPV-positive or
Pap-positive, they would be referred to colposcopy for definitive disease ascertainment. However, only
12,058 (35.2%) of women had repeat cotesting 1 year later; 1,249 (3.6%) opted for immediate colposcopy,
while others either returned late for repeat cotesting (the largest return time was over 10 years later) or
did not return at all.

Among the population of HPV-positive/Pap-negative women, 1,056 CIN3+ were diagnosed, of which
61 (8.8%) were classified as cancers. Because early cervical cancers and precancers usually have no
symptoms, we treated censoring as uninformative. We applied an algorithm to patients’ longitudinal his-
tory of cotesting and colposcopy results so that the intervals (Li,Ri) reflect medical opinion of the smallest
reasonable interval in which disease onset can occur. For example, we accepted negative cotesting results
as a surrogate for ascertaining that a woman did not have precancer/cancer (<CIN3), because HPV-
positivity is a necessary precursor to cervical cancer and negative cotesting results have a very low false
positive rate [26]. Among the 34,261 women testing HPV-positive/Pap-negative at their first cotesting
screen, 61 (0.18%) were diagnosed with CIN3+ at an immediate colposcopy visit. The 995 (2.90%) were
diagnosed with CIN3+ in follow-up, of which we could rule out prevalent CIN3+ for only 292 (0.85%).
The 24,282 (70.87%) were right-censored, while 8,923 (26.0%) did not have sufficient history to classify
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Figure 1. Cumulative risk of CIN3+ for HPV+/Pap−in a screened population. Percentage cumulative risk of
cervical intraepithelial neoplasia grade 3 and cancer (CIN3+) following a HPVpositive/ Pap-negative result at the

initial screen.

as either CIN3+ or <CIN3 at any time point. The percentage risk of a prevalent CIN3+ in the sample is
then between 100×61∕(24, 282+61+995)% = 0.24% and 100×(61+995−292)∕(24, 282+61+995)% =
3.02%.

5.1. Comparison of cumulative risk estimates

For women testing HPV-positive/Pap-negative, we estimated the cumulative risk of CIN3+ using our
non-parametric risk estimator, the Kaplan–Meier estimator treating time of diagnosis as occurrence time,
and various parametric prevalence incidence models fitted without covariates. For parametric prevalence
incidence models, we modelled prevalent disease using an intercept-only logistic regression and consid-
ered the Weibull, exponential, loglogistic, lognormal, generalized gamma, and gamma distributions for
the incidence model. Confidence intervals were obtained by estimating confidence limits on the asymp-
totically normal complementary log–log scale and converting those confidence limits to the cumulative
risk scale. Figure 1 shows the cumulative risk curve of CIN3+ from the non-parametric risk estima-
tor, the Kaplan–Meier estimator, the logistic–Weibull model, and the logistic-generalized-gamma model,
which is the best fitting parametric prevalence–incidence model according to the Bayesian information
criterion (BIC).

The non-parametric cumulative risk curve was a step function that is constant for long intervals fol-
lowed by large jumps, reflecting the clustering in the times that women return for further screening. For
example, both the non-parametric prevalent and 1-year cumulative risk of CIN3+ were 1.99%, but the
non-parametric cumulative risk jumped to 2.79% at 14 months. The non-parametric risk curve was flat
in the first year because few women returned early for screening, and the jump at 14 months reflects
the large clustering of diagnoses from those who returned at 1 year, tested HPV-positive or Pap-positive
at that visit, and were referred to colposcopy visits for definitive disease ascertainment. Because deci-
sion frameworks for action are based on risks at specific time points [8], the non-parametric estimator
cannot be directly used for determining guidelines. However, the non-parametric cumulative risk can be
used to assess fit of other estimators. The non-parametric estimator estimated 1.99% prevalent CIN3+
risk and 5.68% 7-year cumulative risk of CIN3+. In contrast, Kaplan–Meier methods estimated merely
0.18% prevalent CIN3+ risk, reflecting the proportion of HPV-positive/Pap-negative women who were
diagnosed with CIN3+ at immediate colposcopy visits. Kaplan–Meier methods presumed that all CIN3+
diagnosed at future times were truly incident disease and overestimated the hazard of incident CIN3+,
leading to a 7.31% 7-year cumulative risk estimate.

The logistic–Weibull model estimate of 1.87% prevalent CIN3+ risk was close to the non-parametric
estimate of 1.99%, showing that prevalence–incidence models can estimate prevalent disease risk even
when baseline disease is rarely ascertained. Confidence intervals for the logistic–Weibull model were
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Table V. Percentage cumulative risk and 95% confidence inter-
vals of acquiring cervical intraepithelial neoplasia grade 3 or
cancer (CIN3+) following an HPV-positive/Pap-negative result
at the initial screen as estimated by the non-parametric estimator
and by logistic–Weibull prevalence incidence models.

Non-parametric Logistic–Weibull

Year Est. LCL UCL Est. LCL UCL % IR

0 1.99 0.00 2.30 1.87 1.59 2.19 74
1 1.99 1.70 2.30 2.56 2.36 2.78 30
2 3.28 2.90 3.55 3.17 2.95 3.39 32
3 3.81 3.47 4.11 3.73 3.51 3.98 27
4 4.49 4.12 4.80 4.28 4.03 4.55 24
5 5.31 4.60 5.67 4.81 4.53 5.11 46
6 5.31 5.03 5.83 5.33 5.01 5.67 60
7 5.68 5.25 6.12 5.84 5.47 6.24 11

Note: The % interval reduction (IR) is the percent reduction in confi-
dence interval length from the parametric assumptions.

tighter than that of the bootstrap confidence intervals for the non-parametric estimator (Table V). The
parametric assumption resulted in a 74% reduction in confidence interval for the baseline cumulative risk,
and a smaller reduction at later time points. The reduction in confidence interval lengths can be considered
a positive or a negative feature, depending on how much one believes the parametric assumptions.

The logistic–generalized gamma model (BIC = 10, 106) was a better fit to the data than the logistic–
Weibull model (BIC = 10, 117). However, the logistic–generalized gamma model estimated zero hazards
for the first 7 months following the initial HPV-positive/Pap-negative cotesting result; even though there
was little data within this time period, zero hazards for HPV-infected women is unrealistic [27] and
more likely a result of overfitting. Regardless of which distribution (Weibull, exponential, loglogistic,
lognormal, generalized gamma, or gamma) was used for the incidence model, the cumulative risk curves
were similar to one another in respect to the resulting recommendations for guidelines and were close
fits to the non-parametric risk curve. We favor using the logistic–Weibull model over other parametric
prevalence–incidence models, as it allows covariate effects to be described in terms of odds ratios for
prevalent disease and hazard ratios for incident disease.

5.2. Implications for screening guidelines

Management of abnormal Pap screening results in the absence of an HPV test is well established. Women
with atypical cells of undetermined significance (ASC-US) Pap results are asked to return for repeat
screening in 1 year, while women with low-grade squamous intraepithelial lesion (LSIL) or worse Pap
results are referred to immediate colposcopy [22]. We fitted the logistic–Weibull model to KPNC data
and compared the cumulative risk curves for these groups of women with women with HPV-positive/Pap-
negative cotesting results (Figure 2). For HPV-positive/Pap-negative women, the estimated baseline
CIN3+ risk of 1.87% (95% CI: 1.59–2.19%) was lower than the 1.99% (95% CI: 1.24–3.17%) base-
line CIN3+ risk estimated for women with ASC-US Pap results and much lower than the 3.87% (95%
CI: 3.49–4.29%) baseline CIN3+ risk estimated for women with LSIL Pap results. Applying an equal
management of equal risk principle [8], the baseline CIN3+ risk estimates suggest that women with
HPV-positive/Pap-negative cotesting results should not be referred to immediate colposcopy.

The 1-year CIN3+ risk among women with HPV-positive/Pap-negative results (2.56%, 95% CI: 2.36–
2.78%) was similar to the 1-year CIN3+ risk among women with ASC-US Pap results (2.50%, 95%
CI: 1.97–3.17%). However, the hazards of incident CIN3+ were greater among women with HPV-
positive/Pap-negative cotesting results than women with ASC-US Pap results, so that at 5 years, the
cumulative risks of CIN3+ were 4.81% (95% CI: 4.53–5.11%) and 3.37% (95% CI: 2.84–4.00%) for
women with HPV-positive/Pap-negative and ASC-US Pap results, respectively. These risk estimates sug-
gest that women with HPV-positive/Pap-negative results, like women with ASC-US Pap results, should
return for a repeat cotesting screen in one year. However, for HPV-positive/Pap-negative results, clinicians
will need to be especially cautious that women do not skip their return visits.
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Figure 2. Comparing CIN3+ cumulative risk for HPV+/Pap− to that of ASC-US and LSIL Pap. Curves showing
the percentage cumulative risk of cervical intraepithelial neoplasia grade 3 and cancer (CIN3+) following (1) HPV-
positive/Pap-negative cotesting results, (2) Pap results of atypical cells of undetermined significance (ASC-US),

and (3) Pap results of low-grade squamous intraepithelial lesion (LSIL).

Table VI. Result of fitting a logistic–Weibull model with categorical age to women with an initial HPV-
positive/Pap-negative cotesting result at KPNC.

Age category Percentage sample OR HR Precentage prevalent risk 1 year % CR 2 years % CR 3 years % CR

30–34 37.7 1.00 1.00 1.91 2.88 3.75 4.57
35–39 18.4 1.13 0.63 2.14 2.76 3.30 3.83
40–44 13.7 1.38 0.59 2.61 3.17 3.68 4.16
45–49 10.6 0.88 0.38 1.67 2.05 2.38 2.71
50–54 8.4 0.55 0.37 1.06 1.42 1.75 2.06
55–65 11.2 0.63 0.64 1.21 1.85 2.41 2.94

Note: Percentage sample is the percentage of women with HPV-positive/Pap-negative cotesting result in that age cat-
egory. OR are odds ratio of having CIN3+ prevalent at the initial cotesting screen for that age group compared with
the reference group (age 30–34). HR are hazard ratios of acquiring incident CIN3+ after the initial cotesting screen for
that age group compared with the reference group (age 30–34). Percentage prevalent risk refers to the percent risk of
having CIN3+ prevalent at the initial cotesting screen. 1 year, 2 years, and 3 years Percentage CR refers to the percent
cumulative risk of having CIN3+ 1 year, 2 years, and 3 years after the initial cotesting screen, respectively.

Women with HPV-positive/Pap-negative cotesting result may consist of sub-populations with distinctly
different risk profiles [28]; additional information can be used to further personalize management. We
considered how risk profiles may differ for women of different ages by fitting age as a categorical covari-
ate in the logistic–Weibull model (Table VI). No age group had risks of prevalent CIN3+ high enough
to warrant referral to immediate colposcopy. The 2-year cumulative risks of CIN3+ among women of
ages 45–49, 50–54, and 55–65 were 2.38% (95% CI: 1.89–3.00%), 1.75% (95% CI: 1.30–2.36%), and
2.41% (95% CI: 1.94–2.99%), respectively. Compared with the 2.50% implicit cumulative risk threshold
for returning women for repeat screening in 1-year that is implied by women with ASC-US Pap results,
these risks suggest that a longer return time may be reasonably safe with older women. Further analysis
that consider the benefits (e.g., potential reduction in overtreatment) would need to be considered before
recommending an extended screening interval for these age groups.

6. Discussion

Cohorts assembled from electronic health records at health providers can have irregularly interval-
censored outcomes, and prevalent left-censored disease is undetermined when disease ascertainment is
not conducted at the first available visit. We demonstrated that Kaplan–Meier methods are inappropri-
ate and proposed a general family of mixture models, called prevalence–incidence survival models. We
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presented an EM algorithm to fit parametric prevalence–incidence models with covariates and obtained
a non-parametric estimate (no covariates) by adapting standard NPMLE methods. The non-parametric
estimate can be used to assess the fit of parametric prevalence–incidence models such as the logistic–
Weibull. For a cohort undergoing cervical cancer screening at KPNC, Kaplan–Meier yielded poor risk
estimates and the non-parametric cumulative risk is a step function with large jumps. In contrast, the
logistic–Weibull yielded a smooth risk curve and agreed with the non-parametric estimates. The logistic–
Weibull allows for covariate effects to be described in terms of odds ratios for prevalent disease and hazard
ratios for incident disease and the Weibull distribution has previously been suggested for modeling cancer
[19]. The ability to separate out the risk of disease present at baseline versus disease that occurs during
follow-up is important for informing clinical decisions on whether to intervene with a surgical procedure
at the initial screening visit (baseline). These findings support the choice of the logistic–Weibull model
to estimate risks that underlie current US risk-based cervical cancer screening guidelines [21].

Kaplan–Meier is biased under interval-censoring, even with ad hoc schemes to impute event onset
within intervals [29]. We demonstrated that the bias has an interesting pattern: underestimation of risks at
early times and overestimation of risks at later times. This bias is exacerbated by the presence of prevalent
left-censored outcomes. Most work on left-censoring involves inference on the past time of onset and
assumes that it is known a priori whether outcomes are left-censored (prevalent) or interval-censored
(incident) [30]. For clinical use, a simple estimate of the total amount of prevalent disease as a point-mass
at zero can suffice. Definitive disease ascertainment may not be conducted at the first available visit, so
that some disease diagnosed during follow-up are also pre-existing disease.

The proposed mixture model is particularly applicable to our data, because women who test HPV-
positive/Pap-negative at the first available screen consist of two populations: (1) women with long-term
HPV infections who, may already have CIN3+, and (2) women with recently acquired HPV infections,
most of whom will clear their infections, but can have future CIN3+ if the infection persists [28]. We
believe that Kaplan–Meier methods should be avoided. The non-parametric estimate is robust, but con-
stant for long intervals followed by large jumps, and loses efficiency due to the slow n1∕3 asymptotic
convergence rate [31]. The best methodology is to fit a parametric model, such as the logistic–Weibull,
and check that it is a good fit to the non-parametric estimate. Our findings support the choice of using
logistic–Weibull models for KPNC data to estimate the risks that underlie current US cervical screening
guidelines.

Two extensions of prevalence–incidence models would be useful. The first is to develop semi-
parametric versions of the prevalence–incidence models that incorporate covariates. Fitting a Cox model
to interval-censored data has previously been studied [32–34]. These methods might be adapted to
prevalence–incidence survival models. The second is to develop methodology to fit prevalence–incidence
models to general epidemiologic study designs, such as case-control studies, while accounting for
complex sampling.
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