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Cancer may be induced by many environmental and physiological conditions. Infections with viruses, bacteria
and parasites have been recognized for years to be associated with human carcinogenicity. Here we review cur-
rent concepts of carcinogenicity and its associationswith parasitic infections. The helminth diseases schistosomi-
asis, opisthorchiasis, and clonorchiasis are highly carcinogenic while the protozoan Trypanosoma cruzi, the
causing agent of Chagas disease, has a dual role in the development of cancer, including both carcinogenic and
anticancer properties. Althoughmalaria per se does not appear to be causative in carcinogenesis, it is strongly as-
sociated with the occurrence of endemic Burkitt lymphoma in areas holoendemic for malaria. The initiation of
Plasmodium falciparum related endemic Burkitt lymphoma requires additional transforming events induced by
the Epstein-Barr virus. Observations suggest that Strongyloides stercoralis may be a relevant co-factor in HTLV-
1-related T cell lymphomas. This review provides an overview of the mechanisms of parasitic infection-induced
carcinogenicity.

© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Cancers are characterized by uncontrolled growth of abnormal and
transformed cells, which can invade adjacent tissues. The global burden
of cancer in 2012 was estimated to be 14.1 million new cases and 8.2
million related deaths (WHO, 2015). Six types of cancers including
lung, liver, stomach, colorectal, breast, and esophagus cancers are the
most common causes of cancer death; four of these (liver, stomach, co-
lorectal, and esophagus cancers) are often associatedwith distinct infec-
tious diseases (WHO, 2015). Multiple factors can significantly
contribute to carcinogenesis (WHO, 2015).Meetings of experts fromdi-
verse fields of cancer research held at the International Agency for Re-
search on Cancer (IARC) from 2008 to 2009 have reassessed and
classified human carcinogens into "discrete" groups including infectious
pathogens (Bouvard et al., 2009; IARC, 2012).

Infections with eleven species of pathogens associated with cancers
are classified as Group 1 carcinogens, definitely “carcinogenic to
humans”, by the IARC. These agents includeHelicobacter pylori, hepatitis
B virus (HBV), hepatitis C virus (HCV), Opisthorchis viverrini, Clonorchis
sinensis, Schistosoma haematobium, human papillomavirus (HPV), Ep-
stein-Barr virus (EBV), human T-cell lymphotropic virus type 1 (HTLV-
1), human herpes virus type 8 (HHV-8) and human immunodeficiency
virus type 1 (HIV-1) (Bouvard et al., 2009; IARC, 2012; de Martel et al.,
2012). Among parasitic diseases, infections with the two fish-borne
liver flukes of the family Opisthorchiidae (trematodes), specifically
Opisthorchis viverrini and Clonorchis sinensis, can induce cholangiocarci-
noma, and infectionwith the blood fluke Schistosoma haematobiummay
cause cancer of the urinary bladder (Bouvard et al., 2009). Althoughma-
laria per se is not considered carcinogenic to humans by the IARC, the
geographical association between the occurrence of malaria and that
of Burkitt lymphoma provides a clue that malaria plays as a co-carcino-
genic factor, together with EBV infection, for the development of Burkitt
lymphoma (Molyneux et al., 2012). Other species of the genera
Opisthorchis and Schistosoma are thought likely to be carcinogenic
(Sripa et al., 2007; Pakharukova and Mordvinov, 2016). Intriguingly,
Trypanosoma cruzi, the etiological agents of Chagas disease, displays ap-
parently paradoxical roles in malignancy in exerting carcinogenic and
anticancer properties (Krementsov, 2009; Sacerdote de et al., 1980). Po-
tential causative roles of other parasitic infections have been postulated
(Machicado and Marcos, 2016).

Here, we summarize current concepts and facts on associations of
parasite infections, namely schistosomiasis, opisthorchiasis, clonorchiasis,
strongyloidiasis, malaria, and Chagas disease with human cancers and
reviewmechanisms bywhich parasitesmay promote, or impede carcino-
genesis (Table 1).

2. Schistosomiasis and Cancer

Schistosomiasis is a neglected disease causedby infectionwith blood
fluke trematodes of the genus Schistosoma. Out of 207 million cases of
schistosomiasis currently estimated worldwide, 90% occur in sub-Saha-
ran Africa (Steinmann et al., 2006). Schistosomiasis is considered the
most important helminth parasite of humans in terms of morbidity
and mortality. The five species of Schistosoma that infect humans are

Schistosoma haematobium, S. mansoni, S. japonicum, S. intercalatum,
and S. mekongi. Most human infections are due to S. haematobium, S.
mansoni, and S. japonicum. Of those, S. haematobium is the most ubiqui-
tous species in Egypt and in sub-Saharan Africa and causes urogenital
schistosomiasis (UGS). The prevalence of schistosomiasis is associated
with exposure-related factors, in particular with a favourable environ-
ment for the imperative intermediate host snails, sub-optimal sanita-
tion infrastructure, and host genetic factors. Adult worms are usually
found in human hosts; their interactions with the host and parasite-de-
rived products including their eggs strongly induce carcinogenesis
(Brindley et al., 2015). With regard to schistosomiasis at large, clearly
UGS i.e. chronic infection with S. haematobium, is carcinogenic and
thus classified as a Group 1 carcinogen by the IARC (IARC, 2012). Any
carcinogenicity of infection with other schistosomes is far less evident.
Liver and colorectal cancers and lymphoid tumors may be associated
with chronic schistosomiasis. Nonetheless, infection with S. japonicum
is classified by the IARC as Group 2B, i.e. possibly carcinogenic to
humans (IARC, 2012; IARC, 1994).

Bladder cancer is a commonmalignancy of the urinary tractwith ap-
proximately 400,000 new cases and 150,000 deaths occurring annually
(Ferlay et al., 2010). Histological types of bladder cancer include
urothelial carcinoma, squamous, adenocarcinoma, micropapillary,
small cell and plasmacytoid neoplasms. Urothelial carcinomas account
for N90% in the developed world, whereas squamous cell carcinoma is
seen predominating in UGS endemic regions (Knowles and Hurst,
2015). Further important risk factors for the induction of bladder cancer
are host immune responses and host genetic factors (Fig. 1).

2.1. Schistosoma haematobium and Urinary Bladder Cancer

UGS due to S. haematobium has been consistently reported to be as-
sociated with bladder cancer. Early epidemiological findings reported
from Zambia have indicated that 65% of patients with bladder cancer
had concomitant UGS and 75% of them had well-differentiated squa-
mous cell carcinomas (Bhagwandeen, 1976). A study from South Africa
analyzing primary malignant bladder tumors found that the cancers
were frequently squamous cell carcinomas (61%) (Cooppan et al.,
1984). In Tanzania, 72% of bladder cancers were squamous cell car-
cinomas, and 46% of patients with squamous cell carcinomas were
positive for S. haematobium eggs in tumor tissues (Kitinya et al.,
1986). Another study found that UGS was strongly related to an in-
creased risk of cytological abnormalities in a S. haematobium
endemic area of Kenya (Hodder et al., 2000). S. haematobium-asso-
ciated lesions were also detected in 69% of patients with squamous
cell bladder carcinoma in Sudan (Sharfi and el SS, 1992). Case
reports also have suggested a possible association of UGS with
other malignant neoplasms such as prostatic adenocarcinoma and squa-
mous cell carcinoma of the cervix (Basilio-de-Oliveira et al., 2002;
Helling-Giese et al., 1996).

Several mechanisms may account for the role of infection with S.
haematobium in urinary bladder cancer, among them epithelium dam-
age, chronic inflammatory processes and oxidative stress (Bouvard
et al., 2009; Brindley et al., 2015; Honeycutt et al., 2014) (Fig. 1). The
mechanisms, however, need to be investigated further. Fibrosis induced
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by Schistosoma eggs may change proliferation, hyperplasia, and meta-
plasia of host cells that eventually induce carcinogenesis. Nitrosamines
and increased levels of urinary b-glucuronidase and cyclooxygenase-2
derived from adult schistosomes are also recognized as bladder carcin-
ogens. A liquid chromatography-mass spectrometry analysis of urine
samples from UGS patients revealed numerous estrogen-like metabo-
lites including catechol estrogen quinones (CEQ), CEQ-DNA-adducts
and novel metabolites derived from 8-oxo-7, 8-dihydro-2′-
deoxyguanosine (8-oxodG) (Gouveia et al., 2015). The detection of 8-
oxodG indicates the damage of DNA in UGS via oxidative stress as the
formation of 8-oxodG is known as a main product of DNA lesion by ox-
idation. The S. haematobium-derived carcinogensmay lead toDNAdam-
age and somaticmutations through chronic inflammation and oxidative
stress in oncogenes such as p53, RB (retinoblastomaprotein), EGFR (epi-
dermal growth factor receptor), and ERBB2 (erb-b2 receptor tyrosine ki-
nase 2). Of interest is that genomic instability was frequently observed
in p53 and KRAS (V-Ki-ras2 Kirsten rat sarcoma viral oncogene homo-
log) genomic regions of patients with schistosomal bladder cancers
(Abd El-Aal et al., 2015; Honeycutt et al., 2015; Lim et al., 2006; Santos
et al., 2014; Botelho et al., 2013). Chromosomal damage and somatic
mutations were frequently observed in these oncogenes in invasive
squamous cell carcinomas of the bladder during UGS (Rosin et al.,
1994). A recent proteomic analysis of urine samples from UGS patients
additionally confirms the involvement of oxidative stress and immune
responses in the development of S. haematobium-induced bladder can-
cer (Bernardo et al., 2016).

2.2. Schistosoma japonicum and Colorectal and Hepatocellular Carcinoma

Although evidence is sparse, infection with S. japonicum has been
implicated in the etiology of colorectal cancer. Epidemiological and clin-
ical studies in China and Japan suggested that S. japonicummay act as a
carcinogen (Matsuda et al., 1999; Qiu et al., 2005). A Japanese study
found that 19% of patients with chronic liver disease and 51% of patients
with hepatocellular carcinoma (HCC)were infectedwith S. japonicum. A
case-control study has shown that HCC developed in 5.4% of patients
with chronic schistosomiasis and in 7.5% of those with chronic liver

disease. However, a co-contribution of HCV infection to HCC develop-
ment could not be reliably excluded (Iida et al., 1999). A matched,
case-control study in rural China has indicated that previous infections
with S. japonicum were independently associated with both HCC and
colon cancer (Qiu et al., 2005),membranous nephropathy, andmetasta-
tic lung tumors (Matsuda et al., 1999; Chen, 2014; Sekiguchi et al.,
1989). An isolated case of cutaneous squamous cell carcinoma associat-
ed with sporadic porphyria cutanea tarda due to liver functional disor-
der after S. japonicum infection was reported (Ohtake et al., 1991).
Furthermore, a recent case report described a concomitance of S.
japonicum infectionwith rectal carcinoid tumor in an asymptomatic pa-
tient from the Philippines (Zanger et al., 2010). Soluble egg antigen
(SEA) from S. japonicum, which has a strong immunogenic activity,
may contribute to carcinogenesis through stimulation of chronic in-
flammation (Ishii et al., 1994). Somatic mutations in the p53 gene
were examined in Chinese patients with both rectal cancer and S.
japonicum infection, and a higher frequency of argininemissense muta-
tionswere observed in schistosomal rectal cancer ostensibly induced by
schistosome infection compared to non-schistosomiasis rectal cancers
(Zhang et al., 1998). S. japonicum-derived products may be involved in
induction of host genomic instability (Fig. 1).

2.3. Schistosoma mansoni and Cancer

S. mansoni infection may constitute a risk for the development of
HCC during co-infectionwith HCV. Case reports have described associa-
tions of schistosomiasis mansoni with prostatic adenocarcinoma and
sigmoid colonic cancer (Basilio-de-Oliveira et al., 2002; HS et al.,
2010). A recent case report from Turkey described the etiological rela-
tionship between S. mansoni and bladder cancer (Kiremit et al., 2015).
Cell-mediated responses are depressed during intestinal schistosomia-
sis and the degree of suppression apparently correlates with the devel-
opment of hepatosplenomegaly. Anti-idiotype antibodies produced
during chronic schistosomiasis may modulate immune responses and
S.mansoni egg antigens can effectivelymodify subpopulations of T help-
er cells (Cheever et al., 2002). Moreover, schistosomal colitis may be as-
sociated with earlier onset of multicentric colorectal cancer. Altered

Table 1
Parasitic pathogens and infection-associated malignancy.

Parasitic pathogens Disease Endemic areas Associated cancer Proposed mechanism of carcinogenesis

Blood flukes
Schistosoma haematobium Schistosomiasis sub-Saharan Africa Urinary bladder cancer, adenocarcinoma,

squamous cell carcinoma
Inflammation, oxidative stress caused
by parasite-derived molecules

Schistosoma japonicum Schistosomiasis sub-Saharan Africa Colorectal cancer, rectal cancer, squamous
cell carcinoma, membranous nephropathy,
metastatic lung cancer

Inflammation, oxidative stress caused
by parasite-derived molecules

Schistosoma mansoni Schistosomiasis sub-Saharan Africa Adenocarcinoma, colorectal cancer,
hepatocellular carcinoma

Inflammation, oxidative stress caused
by parasite-derived molecules

Liver flukes
Opisthorchis viverrini Opisthorchiasis Southeast Asia Cholangiocarcinoma Inflammation, oxidative stress caused

by parasite-derived molecules, cell
proliferation, H. pylori mediated induction

Clonorchis sinensis Clonorchiasis China, Korea, northern Vietnam Cholangiocarcinoma Inflammation, oxidative stress caused by
parasite-derived molecules, cell proliferation

Opisthorchis felineus Opisthorchiasis Europe and Russia Cholangiocarcinoma Inflammation, oxidative stress caused by
parasite-derived molecules, cell proliferation

Plasmodia species
Plasmodium falciparum
Plasmodium vivax
Plasmodium ovale
Plasmodium malariae
Plasmodium knowlesi

Malaria sub-Saharan Africa, Southeast Asia Burkitt lymphoma (indirect carcinogenicity) Expansion of the EBV-infected B cell population,
Suppression of EBV-specific T-cell immunity,
Reactivation of EBV, AID-dependent genomic
translocation

Strongyloides stercoralis Strongyloidiasis sub-Saharan Africa,
South and Central America
Southeast Asia

HTLV-1 induced lymphomas/leukemias
(indirect carcinogenicity)
Colon
adenocarcinoma

Stimulate HTLV-1 replication,
Oligoclonal expansion of HTLV-1-infected
lymphocytes

Trypanosoma cruzi Chagas' disease South and Central America Gastrointestinal cancer, Uterine leiomyoma Unknown
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expression of the tumor protein 53 (TP53) in patients with S. mansoni
colitis-related colorectal cancer suggests that schistosome infections
may induce carcinogenesis by targeting oncogenes (Madbouly et al.,
2007). Other oncogenes such as Bcl-2 and C-Myc also are relevant in
the development of colorectal cancer during schistosomiasis (Zalata et
al., 2005). Therefore, cancer induction by S. mansoni infection could re-
sult from somatic mutations in oncogenes and in the regulation of
immune responses that can activate several host signaling cancer path-
ways (Fig. 1).

2.4. Carcinogenicity of Schistosoma intercalatum and Schistosomamekongi

Two case reports only have pointed to a possible association of infec-
tionwith S. intercalatum and S. mekongiwith cancer (Cuesta et al., 1992;
Muller and van der Werf, 2008). S. mekongi infection has been associat-
edwith leiomyosarcomaof the small bowel (Cuesta et al., 1992), and in-
testinal S. intercalatum infection was observed in a patient with
rectosigmoid carcinoma (Muller and van der Werf, 2008). However,
these two case reports lacked evidence indicating that S. intercalatum
and S. mekongiwere the causative agents of the observed malignant tu-
mors. To our knowledge, only a single study on an animal model (Cyno-
molgusmonkeys) provides evidence of an association of S. intercalatum
infection with urinary bladder cancer (Cheever et al., 1976). Carcino-
genic properties and mechanisms of S. intercalatummay possibly be in-
ferred due to the similarity of S. intercalatum and S. haematobium in both
morphology and life cycle of the parasite. However, compelling evi-
dence indicating carcinogenicity of S. intercalatum and S. mekongi is
still tenuous.

3. Liver Fluke Infections and Cholangiocarcinoma

Opisthorchiasis and clonorchiasis are caused by fish-borne liver
flukes of the trematode family Opisthorchiidae. N45 million people
worldwide are infected by these pathogens. Species of opisthorchiid
flukes that cause disease in humans are Opisthorchis felineus,
Opisthorchis viverrini, and Clonorchis sinensis. The IARC classifies C.
sinensis as a Group 1 agent (carcinogenic to humans). O. felineus is en-
demic in parts of Europe and Russia; C. sinensis in China, the Republic
of Korea, and northern Vietnam; while O. viverrini-infections occur in
Southeast Asia (Petney et al., 2013). Opisthorchis and Clonorchis are
highly endemic in Mekong Basin countries such as Laos (50% to 70% of
O. viverrini infection), Thailand (16.6%O. viverrini infection in theNorth-
east region and Nakhon Phanom province reported up to 60%), Cambo-
dia (4% to 27%O. viverrini infection) andVietnam(15% to 37%O. viverrini
infection in southern regions and C. sinensis infection 0.2% to 26% in the
north) (Sithithaworn et al., 2012). The consumption of raw fish infested
with infectious metacercariae and intensifying transmission of the par-
asites to humans fromdomesticO. viverrini infected animals contributes
largely to increased incidences (Forrer et al., 2012; Xayaseng et al.,
2013). Pathologic conditions associatedwith opisthorchiasis are mainly
hepatobiliary, specifically caused by bile duct fibrosis, cholangitis and
other manifestations such as obstructive jaundice, hepatomegaly, ab-
dominal pain, and nausea (Keiser and Utzinger, 2009). After consump-
tion of raw fish carrying opisthorchiid metacercariae, parasites excyst
in the duodenum,migrate to the bile ducts and canaliculi following che-
motactic stimuli, and adult worms feed on biliary epithelia and bile in-
gredients, eventually leading to biliary epithelial hyperplasia and
fibrosis (Sripa et al., 2012a).
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Fig. 1. Proposed mechanisms of carcinogenicity induced by infection with the liver and blood flukes Clonorchis, Opisthorchis and Schistosoma species. The chronic inflammation during
Clonorchis, Opisthorchis and Schistosoma infections leads to the activation of signaling pathways including p53, NF-κB, Jak/Stat and Rb that could generate somatic mutations and/or
activate oncogenes. Fluke-derived products and metabolites secreted to the host microenvironment may induce metabolic processes including oxidative stress that facilitate damage
to the chromosomal DNA of proximal epithelial cells, specially cholangiocytes and urothelial cells for the liver and blood flukes, respectively. In addition, physical damage of host
tissues during the development of parasites together with the active wound healing process lead to increased cell transformation and proliferation, which also are associated with the
DNA damage. Combined parasite-host interaction events (chronic inflammation, parasite-derived products, and physical damage) and their combined effects on the chromosomes and
fates of cells lead to the modification of the cell growth, proliferation and survival that in turn initiate and promote malignancy.
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Cholangiocarcinoma, or bile duct cancer, is a highly aggressive ma-
lignancywith poor prognosis. Cholangiocarcinomaaccounts for approx-
imately 20% of all hepatobiliary malignancies and it can be classified as
intrahepatic and extrahepatic cholangiocarcinoma (Tyson and El-Serag,
2011). Incidences and mortality rates have significantly increased and
effective therapies are barely available. Complex factors including ge-
netics, environments, concomitant liver diseases, chronic infectious dis-
eases and the parasitic infections (opisthorchiasis and clonorchiasis) are
major risks for cholangiocarcinoma (Palmer and Patel, 2012; Welzel et
al., 2007). The association of cholangiocarcinoma with opisthorchiasis
and clonorchiasis has been evidenced by experimental, epidemiological
and clinical data. Proposedmechanisms of carcinogenesis are biliary ep-
ithelium damage by parasites, long lasting immune-mediated patho-
genesis, and effects of parasite-derived products on the bile ducts with
subsequent modification of host cell proliferation (Brindley et al.,
2015; Chaiyadet et al., 2015a; Chaiyadet et al., 2015b) (Fig. 1).

3.1. Carcinogenicity of Opisthorchis viverrini

Opisthorchiasis is inarguably associated with cholangiocarcinoma in
Southeast Asia (Khuntikeo et al., 2016; Haswell-Elkins et al., 1994) and
is classified as Group 1 carcinogen by the IARC (Bouvard et al., 2009;
IARC, 2012; de Martel et al., 2012). Together with O. viverrini infection,
co-factors such as environmental or exotic microbes in the biliary sys-
tem that resist host inflammatory responses might also contribute to
carcinogenesis (Sripa et al., 2007; Plieskatt et al., 2013; Chng et al.,
2016). A mechanism that can explain the association between O.
viverrini infection and bile duct cancer is that parasite-derived mole-
cules can lead to uncontrolled growth of host cells. An animal model
has supported this mechanism by showing that the dimethylnitrosa-
mine derived from Opisthorchis can induce cholangiocarcinoma and
the levels of precursors of nitroso compounds were elevated in body
fluids of O. viverrini infected individuals (Haswell-Elkins et al., 1994).
The parasite-derived granulin can promote proliferation of biliary
cells, and thioredoxin (TRX) and thioredoxin peroxidase (TPX) can pre-
vent apoptosis (Sripa et al., 2012a; Smout et al., 2009; Matchimakul et
al., 2015; Smout et al., 2015). In addition, an analysis of O. viverrini ex-
tract has identified novel oxysterol derivatives in O. viverrini, which
are potential carcinogenic compounds (Vale et al., 2013).

Long-lasting interactions between O. viverrini and host responses
initiate carcinogenesis. O. viverrini extracts could stimulate the produc-
tion of inflammatory cytokines (Ninlawan et al., 2010) and O. viverrini
derived products are internalized by cholangiocytes,which consequent-
ly induced cell proliferation and IL-6 production (Chaiyadet et al.,
2015a). Higher IL-6 levels were observed in infected patients with bile
duct cancer compared to those without (Sripa et al., 2009; Sripa et al.,
2012b). These data indicate that opisthorchiidae have strong proinflam-
matory properties, which increase the risk of carcinogenesis
(Ogorodova et al., 2015). On the other hand, host immunological factors
play also a crucial role in determining the outcome of opisthorchiid in-
fection and in initiation of cholangiocarcinogenesis. In this context, it
was shown thatO. viverrini infection down-regulates RB1 (retinoblasto-
ma 1) and p16INK4 (cyclin-dependent kinase inhibitor 2A) expression
and up-regulates cyclin D1 and CDK4 (cyclin-dependent kinase 4) ex-
pression during cholangiocarcinoma development (Boonmars et al.,
2009). These proteins are members of the retinoblastoma protein (RB)
pathway, which is strongly involved in cancer development. Moreover,
the chronic inflammatory condition caused by O. viverrini leads to up-
regulation of the PI3K/AKT and Wnt/β-catenin signaling pathways in-
volved in tumorgenesis (Yothaisong et al., 2014). Recently, a
proteomic study has indicated that the 14-3-3 eta protein is up-regulat-
ed duringO. viverrini infection and in early stages ofO. viverrini-induced
cholangiocarcinoma (Haonon et al., 2015) and in intrahepatic cholan-
giocarcinoma of patients void of O. viverrini infection (Zhang et al.,
2015), indicating that the 14-3-3 eta protein is involved in host re-
sponses and contributes to carcinogenesis. This is supported by previous

findings on the central role of the 14-3-3 eta protein in different control-
ling processes of cell cycle and in the regulation of various oncogenes
and tumor suppressor genes (Tzivion et al., 2006; Wanzel et al., 2005).

At the genomic level, analysis of the mutation profiles of 108
cases with O. viverrini-related cholangiocarcinomas and 101 cases
with non-O. viverrini infection-related cholangiocarcinomas re-
vealed a significant difference in host genetic mutation patterns
(Chan-On et al., 2013). In particular, somatic mutations occur more
frequently in the p53 and SMAD4 (SMAD family member 4) genes
in O. viverrini related cholangiocarcinomas compared to non-O.
viverrini related cholangiocarcinomas. Somatic mutations occurring
in the BAP1 (BRCA1 associated protein-1), IDH1, and IDH2 (isocitrate
dehydrogenases 1 and 2) genes aremore common in non-O. viverrini
than in O. viverrini related cholangiocarcinomas (Chan-On et al.,
2013; Jusakul et al., 2015). Mutations in the tumor suppressor
genes p53 and SMAD4 directly affect the related cellular signaling
pathways p53 and TGF-b, which both are involved in tumorgenesis
(Jusakul et al., 2015).

3.2. Carcinogenicity of Clonorchis sinensis

The association between infection with C. sinensis and cholangiocar-
cinoma has been convincingly documented (IARC, 2012; Sripa et al.,
2007; Choi et al., 2006), and these helminths have been classified as
highly carcinogenic agents (Bouvard et al., 2009; de Martel et al.,
2012). Indeed, a case-control study from Korea showed that C. sinensis
infection was significantly associated with increased risk of cholangio-
carcinoma (OR= 7.3, 95%CI = 3.96–13.3) (Choi et al., 2006). An epide-
miologic survey performed in 3169 Korean residents also showed that a
higher prevalence of C. sinensis infection was associated with a higher
incidence of cholangiocarcinoma (Lim et al., 2006). The exact mecha-
nisms by which C. sinensis contribute to carcinogenesis are not clearly
understood, although similar mechanisms to those of O. viverrini-in-
duced carcinogenesis (via inflammation, parasite-derived products
and physical damage) may be anticipated. Pancreatic ducts may harbor
C. sinensis, which can lead to squamous metaplasia and mucous gland
hyperplasia, and a well-differentiated ductal adenocarcinoma of the
pancreas (Colquhoun and Visvanathan, 1987). A study has demonstrat-
ed that C. sinensis-derived excretory-secretory products may promote
aggregation and invasion of cholangiocarcinoma cells into theneighbor-
ing extracellular matrix (Won et al., 2014). Strong stimulation of Th2-
associated inflammation by C. sinensis could be a risk factor for the initi-
ation and development of cancer (Kim et al., 2012). DuringC. sinensis in-
fection, peroxiredoxin 6 (Prdx6) expression was inversely correlated
withNF-κB activation due to the response to C. sinensis-derived excreto-
ry-secretory products (ESPs) (Pak et al., 2016). C. sinensis induces the
expressions of various lipid peroxidation products such as 4-hydroxy-
2-nonenal (HNE), cyclooxygenase-2 (COX-2), 5-lipoxygenase (5-LOX)
and 8-oxo-7.8-dihydro-2′-deoxyguanosine (8-oxodG) and plasma pro-
inflammatory cytokines (TNF-α, ILβ-1 and IL-6). Among various lipid
peroxidation products, 8-oxodG formation (a product of DNA lesion)
was initially detected in the nucleus of the inflammatory cells and sub-
sequently in the biliary epithelial cells in a C. sinensis mouse model
(Maeng et al., 2016). These results indicate that C. sinensis demonstrate
a strong immunogenic property and robustly induce metabolic oxida-
tive stress.

3.3. Carcinogenicity of Opisthorchis felineus

The association of infectionwithO. felineuswith cholangiocarcinoma
has been proposed (Sripa et al., 2007; Maksimova et al., 2015). The
mechanisms by which O. felineus contributes to carcinogenesis are
also not clearly understood. Negative correlations between O. felineus
and responses to allergens suggest that Opisthorchiidae are able to in-
duce regulatory cells (Ogorodova et al., 2007). O. felineus infection has
been shown to be a relevant modifier of Th1/Th2-regulating genes as
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O. felineus antigens were able to modulate expression of specific genes
like SOCS5 (suppressor of cytokine signaling 5) and IFNG (interferon
gamma) (Saltykova et al., 2014). Moreover, regulatory T cells are associ-
ated with faster tumor growth and poor prognosis of cancer (Nomura
and Sakaguchi, 2005). A recent report indicates that dysmetabolism of
glucose, perhaps in the setting of diabetes (Saengboonmee et al.,
2015), and activities of dicarbonyl stress may also be implicated
(Saltykova et al., 2016).

4. Malaria and Burkitt lymphoma

4.1. Malaria

Five species of the protozoan parasite Plasmodium - Plasmodium
falciparum, P. vivax, P. ovale, P. malariae, and P. knowlesi affect humans.
P. falciparum is the most virulent and widespread in regions endemic
for malaria (Hay et al., 2010). Malaria has caused N200 million clinical
episodes worldwide in 2010 (WHO, 2014). There were an estimated
650,000 malaria deaths in 2010, of which 91% (596,000) were reported
from Africa. Malaria is almost exclusively transmitted by infective bites
of female Anopheles mosquitoes. P. falciparum exhibits remarkable bio-
logical diversity and the ability to rapidly develop resistance to almost
all anti-malarial drugs (Hay et al., 2010). Sporozoites released from
the mosquitoes invade hepatocytes and multiply into merozoites,
which subsequently are released from the hepatocytes and enter the
blood stage by infecting erythrocytes. During the blood stage, erythro-
cytes are damaged as parasites digest haemoglobin to obtain essential
amino acids.

4.2. Burkitt Lymphoma

Burkitt lymphoma is a monoclonal B cells cancer and the fastest
growing tumor in humans in malaria endemic areas of sub-Saharan Af-
rica (Molyneux et al., 2012). Burkitt lymphoma is classified into the clin-
ical types of endemic, sporadic and immunodeficiency-associated
Burkitt lymphoma. The annual incidence is approximately 40–50 per
onemillion children, and in high-risk areas, endemic Burkitt lymphoma
accounts for half of all childhood cancers and up to 90% of lymphomadi-
agnoses (Molyneux et al., 2012; Orem et al., 2007). The chromosome
translocation between the c-Myc oncogene and immunoglobulin (Ig)
gene loci that leads to deregulation of c-Myc expression together with
p53 gene mutations are known to be most relevant in the pathogenesis
of Burkitt lymphoma (Chiarle et al., 2011; Klein et al., 2011;Wilmore et
al., 2015; Gutierrez et al., 1997). Burkitt lymphoma is clearly associated
with EBV infection, and in non-malaria-endemic areas it is associated
with HIV/AIDS (Molyneux et al., 2012; Rochford et al., 2005).

4.3. Malaria as Indirect Risk Factor for Burkitt Lymphoma

Although malaria itself is not classified carcinogenic, endemic
Burkitt lymphoma in sub-Saharan Africa is geographically associated
with holoendemicity of P. falciparum malaria. A plethora of epidemio-
logical, experimental and clinical studies have demonstrated the syner-
gistic effects of host genetic factors and infections such as EBV, P.
falciparum and HIV on Burkitt lymphoma development (Molyneux et
al., 2012). Co-infection with P. falciparum malaria and EBV is the main
risk factor for endemic Burkitt lymphoma. In a cohort of 711 Kenyan
Burkitt lymphoma cases, the rates were higher in regions with chronic
and intense malaria transmission compared to regions with no or spo-
radic malaria transmission (Rainey et al., 2007). A recent study of 303
endemic Burkitt lymphoma and 274 non endemic Burkitt lymphoma-
related cancers in Malawi found that patients with endemic Burkitt
lymphoma had a higher prevalence and more genetic diversity of P.
falciparum parasites compared to non-endemic Burkitt lymphoma-re-
lated cancers (Johnston et al., 2014). The precise mechanisms of how
malaria is related to the increased risk of Burkitt lymphoma and how

malaria could induce the pathogenesis of Burkitt lymphoma have
remained a mystery for decades. The mechanisms proposed are expan-
sion of the EBV-infected B cell population, suppression of EBV-specific
T-cell immunity, reactivation of EBV and activation-induced cytidine
deaminase (AID)-dependent genomic translocation (Fig. 2).

4.3.1. Expansion of EBV-Infected B Cells
Interaction of P. falciparum and B cells is considered as a key factor. B

cell activation and hyper-gammaglobulinemia in malaria have been
well described both experimentally and clinically. A study has shown
that P. falciparum-infected erythrocytes directly adhere to and activate
B cells through the CIDR1α domain of P. falciparum erythrocyte mem-
brane protein 1 (PfEMP1) (Simone et al., 2011). Binding of PfEMP1
and CIDR1α induces expression of Toll-like receptor (TLR)7 and TLR10
and sensitizes B cells to TLR9 signaling leading to persistent activation
of B cells and subsequently to impairment of their functions in chronic
malaria (Simone et al., 2011). Interaction of PfEMP1-CIDR1α also in-
duces proliferation of B cells, expression of distinct activationmolecules,
and differentiation into plasma cells, thereby increasing the secretion of
IgM immunoglobulins and cytokines (Donati et al., 2004). Increasing
proliferation of polyclonal B cell populations might enhance the risk of
expansion and transition of EBV-infected B cells, which could lead to
the emergence of a malignant B-cell clone (Rochford et al., 2005). Clin-
ically, P. falciparum infection is associated with enhanced proliferation
and transformation of EBV-infected cells in both children with acute
or asymptomatic malaria (Moormann et al., 2005) (Fig. 2).

4.3.2. Suppression of EBV-Specific T Cell Immunity
The fact that P. falciparum can inhibit EBV-specific T cell immunity

could explain how EBV and P. falciparum infections are associated
with the increased risk of Burkitt lymphoma. Failure of EBV-specific
T cells to control EBV-infected cells in malaria patients leads to the
expansion and abnormal proliferation of EBV-infected B cells
(Whittle et al., 1984). In addition, suppression of EBV-specific T
cell immunosurveillance and altered differentiation of EBV-specific
CD8(+)T cell occur in children resident in malaria regions
(Moormann et al., 2007; Chattopadhyay et al., 2013). Furthermore,
EBV-specific CD4(+)T cell responses were observed during early in-
fection stages but subsequently decline rapidly (Precopio et al.,
2003). Accordingly, dendritic cells could contribute to inhibition of
T cell immunity during malaria, as P. falciparum-infected erythro-
cytes are able to adhere to dendritic cells and modulate their func-
tions through a TLR9-dependent pathway (Pichyangkul et al.,
2004). These interactions inhibit maturation of dendritic cells
(DCs) and their capacity to activate immune responses and alter
the IL-12 and IL-10 secretion patterns (Urban et al., 1999;
Ocana-Morgner et al., 2003). Support for this mechanism is provid-
ed by clinical observations indicating impairment of DC functions,
and increased plasma IL-10 levels are associated with high parasite
densities and poorer parasite clearance in children during acute ma-
laria (Urban et al., 2001; Hugosson et al., 2004) (Fig. 2).

4.3.3. Reactivation of EBV Viremia Induced by Malaria
The expansion of EBV-infected B cells is associatedwith higher levels

of B cell-carried EBV-DNA and plasma cell-free EBV-DNA (Njie et al.,
2009; Rasti et al., 2005). A study has shown that cell-free EBV-DNA
levels in plasma of children and pregnantwomenwithmalaria were in-
creased compared to those without malaria, showing that EBV can be
reactivated during malaria infection (Rasti et al., 2005; Daud et al.,
2015). Circulating viral loads were also associated with increased expo-
sure to malaria as well as with severity and the number of disease epi-
sodes (Moormann et al., 2005; Rasti et al., 2005; Donati et al., 2006;
Yone et al., 2006) indicating that P. falciparum infection contributes to
reactivate viral replication. Furthermore, elevated plasma EBV viral
loads were associated with the development of endemic Burkitt
lymphoma (Asito et al., 2010). Providing a deeper insight into
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P. falciparum-induced EBV reactivation, a study has uncovered the
mechanism that binding between latently EBV-infected B cells and the
domain CIDR1α of the PfEMP1 protein directly switches the virus into
lytic replication and CIDR1α stimulates EBV production in peripheral
blood mononuclear cells (Chene et al., 2007) (Fig. 2).

4.3.4. AID-Dependent Genomic Translocation Induced by Plasmodium
falciparum

Molecular mechanisms to explain how Plasmodium infection pro-
motes Burkitt lymphomagenesis remain controversial. P. chabaudiwas
used to establish chronic malaria in an animal model; the infection re-
sulted in an increased and prolonged clonal expansion of B cells in ger-
minal centers and primarily induced expression of AID in Plasmodium-
induced germinal center B cells (Robbiani et al., 2015). AID deficiency
was associatedwith anemia, splenomegaly, extramedullary hematopoi-
esis, and reduced survival suggesting an essential role of AID in control-
ling chronic malaria (Robbiani et al., 2015). Similarly, P. falciparum
extracts were shown to stimulate expression of AID in germinal center
B cells in-vitro and in-vivo (Torgbor et al., 2014). Frequentmalaria expo-
sure led to an increased expression of AID, which coincides with de-
creased IgM+ memory B cells (Wilmore et al., 2015). Widespread
chromosome translocationswere also observed in Plasmodium-induced
germinal center B cells and the rearrangements occurred more fre-
quently in genic regions. In a mouse model of chronic malaria, AID in-
duced genomic instability of germinal center B cells, mostly in
immunoglobulin (Ig) regions and in highly transcribed genes
(Robbiani et al., 2015). Earlier studies have shown that AID contributes

to induce somatic mutations and DNA breaks in immunoglobulin genes
and in oncogenes (c-Myc) that lead to c-Myc and IgH translocations
(Robbiani et al., 2008). AID also causes rearrangement of other genes,
which act as translocation partners in mature B cell lymphoma (Klein
et al., 2011) by predominantly targeting the super-enhancers and regu-
latory clusters of B cells,which are the genomic domainswith high tran-
scriptional and regulatory activity (Qian et al., 2014; Meng et al., 2014).
Therefore, AID is a central player required to control chronicmalaria and
to promotemalaria-induced lymphomagenesis. Taken together,malaria
is not a direct trigger of cancer, but P. falciparum infection rather mod-
ifies the lymphoma phenotype to favor more mature B cell lymphomas
by stimulating prolonged AID expression in germinal center B cells
(Robbiani et al., 2015) (Fig. 2).

5. Strongyloides stercoralis and Cancer

Strongyloides stercoralis, an intestinal nematode, can cause strongy-
loidiasis and gastrointestinal ulcer. S. stercoralis infects approximately
50–100 million people in tropical and subtropical regions (Segarra-
Newnham, 2007). Approximately 50% of individuals chronically infect-
ed with S. stercoralis are asymptomatic while symptomatic forms may
lead to severe skin pathology, diarrhea, nausea, and abdominal discom-
fort. Infection with S. stercoralis may be complicated by autoinfection,
which results in a hyperinfection syndrome and is associated with
sustained infection, high worm burden and high mortality (Segarra-
Newnham, 2007). Notably, hyperinfection with S. stercoralis has been
demonstrated to be in part geographically associated with the
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Fig. 2. Proposedmechanisms of induction of Epstein-Barr virus driven Burkitt lymphoma by falciparummalaria. Plasmodium falciparum infected red blood cells (iRBC) bind to the Epstein-
Barr virus (EBV) latently infected B cells through the CIDR1α domain of P. falciparum erythrocyte membrane protein 1 (PfEMP1) that lead to the expansion of the latently infected B cell
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occurrence of HTLV-1 infections. A recent epidemiological study inves-
tigated the association of co-infection with S. stercoralis and HTLV-1
with cancers in a large cohort of 5209 cancer patients and showed
that S. stercoralis infection was associated with an increased occurrence
of cancers (Tanaka et al., 2016). HTLV-1 causes adult T cell leukaemia/
lymphoma by enhancing immortalisation and transformation of T cells
and therefore has been classified as a Group 1 carcinogen by the IARC
(IARC, 2012; Gabet et al., 2000). The HTLV-1 proteins Tax and HBz are
involved in many regulatory processes including induction of growth
of infected T cells and transformation, transcription of cellular genes,
and genetic instability. HTLV-1 proviral loads were significantly higher
inHTLV-1 carrierswith strongyloidiasis than inHTLV-1 positive individ-
uals without S. stercoralis infection suggesting that S. stercoralis may
stimulate HTLV-1 replication (Gabet et al., 2000). In addition, the hel-
minth infection has been shown to induce polyclonal expansion of
HTLV-1-infected T cells by activation of the IL-2/IL-2R system (Satoh
et al., 2002). These findings suggest that S. stercoralis is a cofactor for
the development of HTLV-1- induced lymphoid cancers (Table 1).

In addition, a case report described a Korean patient presentingwith
both S. stercoralis infection and early gastric adenocarcinoma. Further
analysis revealed that the gastric adenocarcinoma and adenoma tissues
were positive for S. stercoralis suggesting a causative effect of S.
stercoralis (Seo et al., 2015). An association of colorectal cancer with
chronic S. stercoralis infection has also been reported in a Columbian pa-
tient (Tomaino et al., 2015). These observations suggest that S.
stercoralis may not only serve as a cofactor for induction of HTLV-1-re-
lated lymphoid cancers, but also stimulates induction of colon adeno-
carcinoma probably by interacting with the host and/or activating the
host immune response.

6. Paradoxical Dual Impacts of Chagas Disease in Carcinogenesis

Chagas disease (CD), a parasitic disease caused by the flagellated
protozoan Trypanosoma cruzi, occurs throughout South and Central
America, and affects approximately 15 million people (Coura, 2013).
Successful transmission of T. cruzi primarily occurs through triatomine
insects (kissing bugs). People become infectedwhen feces of the kissing
bug containing the trypomastigote stage of T. cruzi are deposited on the
human skin while the insect feeds on blood; the T. cruzi containing in-
sect feces contaminate mucous membranes, conjunctivae, or skin
breaks, and initiate human infection (Stevens et al., 2011).

Approximately 40% of persons infected with T. cruzi are asymptom-
atic or presentwith indeterminate forms. About 2–5% progress annually
to symptomatic forms with irreversible cardiac and/or digestive disor-
ders, mostly presenting as megaorgans (Nunes et al., 2013). b1% devel-
op severe acute disease with the clinical manifestations of acute
myocarditis, pericardial effusion, and/or meningoencephalitis (Nunes
et al., 2013).

6.1. Chronic Infection with Trypanosoma cruzi as a Risk Factor for
Carcinogenesis

An association of CDwith gastrointestinal cancer has been proposed
(Sacerdote de et al., 1980). A case report described a patient with
chagasic megaesophagus who had developed esophageal
leiomyosarcoma (Adad et al., 1999). A case-control study has shown
that 27% of women with uterine leiomyomawere serologically positive
for CD compared to 16% of controls with other benign gynecological al-
terations (Murta et al., 2002). Other case reports have pointed to an as-
sociation of chagasic megacolon and development of colon cancer
(Adad et al., 2002; Oliveira et al., 1997). One documented mechanism
is an increase of gastroesophageal reflux into the megaesophagus (de
Oliver et al., 2014). A study examined cytogenetic alterations in patients
with chagasic megaesophagus and observed aneuploidies of chromo-
somes 7, 11, and 17 in 60% and the deletion of the oncogene p53 in
54.5% of 20 study patients; this might increase the risk of tumor

development (Manoel-Caetano et al., 2004). While point mutations in
exonic regions of p53, FHIT (fragile histidine triad gene) and CDKN2A
(cyclin-dependent kinase Inhibitor 2A) genes or genomic imbalances
were not frequent in chagasic megaesophagus, a silent mutation in
exon7 of the FHIT gene and copy numbers of the CDKN2A and CEP9
(C-terminally encoded peptide 9) genesmight be involved in esophage-
al carcinogenesis (SM-C et al., 2009; Bellini et al., 2010). The assumed T.
cruzi-related carcinogenesis is most likely due to host genetic factors,
and the parasite-host interaction resulting in chronic inflammation in
particular tissues (Fig. 3).

6.2. Anticancer Activity of Trypanosoma cruzi

Anticancer properties of T. cruzi were first reported in 1931 and a
product of T. brucei, another member of the trypanosome family, has
been suggested to exert antitumor properties. A study using a mouse
model demonstrated that smaller tumor size was associated with high
parasitemia and suggested that surface cellular antigens and an
inhibiting or lysing factor of T. cruzi contribute to anticancer activities
(Kallinikova et al., 2001). Similarly, chronically infected animals have a
decreased risk to develop colon tumor compared to non-infected ani-
mals after challenge with 1.2-dimethylhydrazine (DMH), a drug induc-
ing colon cancer (Oliveira et al., 2001). Immunization with T. cruzi
epimastigote lysate strongly inhibited tumor development in vivo by in-
ducing the activation of both CD4(+) and CD8(+) T cells as well as by
increasing numbers of CD11b/c(+) His48(−) MHC II(+) cells, which
correspond to macrophages and/or dendritic cells. Antibodies against
T. cruzi lysate recognized various rat and human tumor cell types such
as colon and human breast cancer cells and thusmediate tumor cell kill-
ing through antibody-dependent cellular cytotoxicity (ADCC) (Ubillos
et al., 2016). To illustrate this mechanism, studies have identified a par-
asite chaperone molecule, the T. cruzi calreticulin (TcCRT) (Aguillon et
al., 2000) and demonstrated its potent antiangiogenic and antitumor ef-
fects both in-vitro and in-vivo. TcCRT is able to directly interact with
human endothelial cells through a receptor-dependent mechanism
and to inhibit their proliferation, migration and capillary morphogene-
sis. In an in vitro experiment, TcCRT was capable to inhibit growth of
murine mammary tumor cells (Lopez et al., 2010; Ramirez et al.,
2011a). In addition, TcCRT plays a central role during the host-parasite
interplay by interactingwith complement proteins such as complement
factor (C1),mannose-binding lectin (MBL), andficolins to inhibit activa-
tion of the complement system that leads to increased infectivity of the
parasite (Lopez et al., 2010; Ramirez et al., 2011b; Sosoniuk et al., 2014).
This indicates that TcCRT does not only act as a virulence factor
(Sanchez-Valdez et al., 2014) to persist, sustain and promote infectivity
but also inhibits growth and metastasis of tumors. A further study has
demonstrated that some T. cruzi strains are able to respond to oxidative
stress caused by DNA damaging agents (Campos et al., 2011;
Grazielle-Silva et al., 2015). The oxidative stress response of T. cruzi
was mediated via the TcMSH2 protein, which is the central component
of the mismatch repair (MMR) machinery in T. cruzi (Campos et al.,
2011; Augusto-Pinto et al., 2001). These findings indicate that the sur-
vival ability of T. cruzi in the host is most likely granted through protec-
tion from oxidative stress by the effective DNA repairing pathway. In
addition, MMR deficiency is significantly associated with predisposition
to cancer (Bridge et al., 2014). Therefore, the oxidative stress response
of T. cruzimay also be of importance in protection of host chromosomes
during chronic inflammation and, thus, in reduced cancer development.

Further to the anticancer properties, T. cruzi is an effective cancer an-
tigen delivery vector (Junqueira et al., 2011). A study utilized the atten-
uated T. cruzi CL-14 clone to express exogenously a cancer testis antigen
(NY-ESO-1) and showed that T. cruzi parasites expressing NY-ESO-1
were able to induce strong NY-ESO-1 specific immune responses both
in-vitro and in-vivo. Interestingly, immunization with T. cruzi parasites
expressing NY-ESO-1 would lead to an effective immune response to
kill tumor cells and to inhibit tumor development (Junqueira et al.,
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2011). Taken together, T. cruzi may exert both carcinogenic and antitu-
mor effects (Fig. 3).

7. Conclusions and Perspectives

The associations between infections with parasites and human can-
cers are well-evidenced. S. haematobium, O. viverrini, and C. sinensis are
highly carcinogenic while other infectious species of the genera
Opisthorchis (O. felineus) and Schistosoma (S. japonicum and S. mansoni)
demonstrate their carcinogenic potential in humans (Table 1). Three
main carcinogenic mechanisms have been described for these blood
and liver flukes, including chronic inflammation, metabolic oxidative
stress induced by parasite-derived products and host tissue damage
during parasite development, along with the active wound healing
(Fig. 1). However, detailed insights have not yet been obtained into
these relationships, and/or into understanding functional consequences
of both parasitic and host factors. Studies focusing on the identification
of carcinogenic parasite factors and by which mechanisms host signal-
ingpathways or oncogenes contribute to promote tumorgenesis are fur-
ther warranted.

In malaria-related endemic Burkitt lymphoma, the AID protein ap-
pears to be an important factor that contribute to control chronicmalar-
ia and to induce human genomic instability (Fig. 2). Future clarification
of AID in controlling Plasmodium infection and in its interaction with
host chromosomes during B cell differentiation needs to be studied. In
addition, themechanisms by which S. stercoralis can inducemalignancy
togetherwithHTLV-1 and/or directly induce carcinogenesis require fur-
ther studies. While the carcinogenic role and mechanism of T. cruzi are
not understood, anticancer properties of T. cruzi are mediated via the
TcCRT and probably due to an effective response to oxidative stress
(Fig. 3). Functional studies are required to warrant the antiangiogenic

and antitumor properties of T. cruzi including studies of TcCRT and
other molecules, which are potentially involved.
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