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RESEARCH ARTICLE Open Access

Identification of candidate infection genes
from the model entomopathogenic
nematode Heterorhabditis bacteriophora
Jonathan Vadnal1, Ramesh Ratnappan2, Melissa Keaney2, Eric Kenney1, Ioannis Eleftherianos1*,
Damien O’Halloran1,3* and John M. Hawdon2*

Abstract

Background: Despite important progress in the field of innate immunity, our understanding of host immune
responses to parasitic nematode infections lags behind that of responses to microbes. A limiting factor has been
the obligate requirement for a vertebrate host which has hindered investigation of the parasitic nematode infective
process. The nematode parasite Heterorhabditis bacteriophora offers great potential as a model to genetically dissect
the process of infection. With its mutualistic Photorhabdus luminescens bacteria, H. bacteriophora invades multiple
species of insects, which it kills and exploits as a food source for the development of several nematode generations.
The ability to culture the life cycle of H. bacteriophora on plates growing the bacterial symbiont makes it a very exciting
model of parasitic infection that can be used to unlock the molecular events occurring during infection of a host that
are inaccessible using vertebrate hosts.

Results: To profile the transcriptional response of an infective nematode during the early stage of infection, we
performed next generation RNA sequencing on H. bacteriophora IJs incubated in Manduca sexta hemolymph plasma
for 9 h. A subset of up-regulated and down-regulated genes were validated using qRT-PCR. Comparative analysis of
the transcriptome with untreated controls found a number of differentially expressed genes (DEGs) which cover a
number of different functional categories. A subset of DEGs is conserved across Clade V parasitic nematodes revealing
an array of candidate parasitic genes.

Conclusions: Our analysis reveals transcriptional changes in the regulation of a large number of genes, most of which
have not been shown previously to play a role in the process of infection. A significant proportion of these genes are
unique to parasitic nematodes, suggesting the identification of a group of parasitism factors within nematodes. Future
studies using these candidates may provide functional insight into the process of nematode parasitism and also the
molecular evolution of parasitism within nematodes.
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Background
Parasitic nematodes (PN) continue to place a considerable
burden on human health and agricultural production. PN
diseases cause a variety of unfavorable conditions ranging
from lethargy to fever, diarrhea, blindness and death. An
estimated 1–1.2 billion people are infected with PNs lead-
ing to an increase of up to 52.1 million disability adjusted
life years with hookworm infections contributing more
than 40% of the lost years alone [1]. Current control strat-
egies of deworming, while effective in the short-term, are
inadequate due to frequent reinfection and the develop-
ment of drug resistant nematode populations. Further-
more, attempts at creating a vaccine have been hindered
due to the lack of good animal models and effective anti-
gens [2].
While PN infections are understood to be immuno-

modulatory in nature, the molecular mechanisms of in-
fection are poorly understood [3]. While efforts have
been made to study parasitism in PNs directly, the re-
quirement of a vertebrate host for development makes
in vitro cultivation currently impossible, thereby making
access to parasitic life stages and the interactions be-
tween the host immune system and the parasite difficult
[4]. Even though a great deal has been learned about
nematode biology and development using the free-living
nematode Caenorhabditis elegans, it is not a parasite
and thus does not allow for relevant investigations of PN
infection mechanisms. For this reason, interest in devel-
oping Heterorhabditis bacteriophora into a model organ-
ism in order to study nematode parasitism has recently
grown [5–8].
Heterorhabditis bacteriophora is a member of the Eur-

habditis clade, which also contains other PNs such as
the vertebrate hookworms Ancylostoma ceylanicum and
Necator americanus as well as the model organism C.
elegans. Heterorhabditis bacteriophora is an entomo-
pathogenic nematode (EPN) which uses host insects and
the mutualistic bacteria Photorhabdus luminescens to
successfully reproduce [9]. The free-living stage of H.
bacteriophora, the infective juvenile (IJ), is a develop-
mentally arrested stage analogous to the infective stage
of hookworms and the dauer of C. elegans [10, 11]. The
IJs seek host insects to colonize and reproduce. Once
established, the IJs resume their development and pro-
gress through the complete life cycle of H. bacterio-
phora. After 2 to 3 generations of reproduction, the
nutrition of the host’s cadaver is exhausted and juveniles
begin to arrest in mass as IJs. These IJs leave the cadaver
and begin to search for a new host. Unlike hookworms
and most other PNs, H. bacteriophora and its bacterial
symbiont P. luminescens can be manipulated and cul-
tured in vitro. Additionally, advanced molecular tools
(e.g. gene silencing by RNAi) are being developed for
H. bacteriophora as well as the recent publication of

its genome, making H. bacteriophora potentially an
excellent alternative model for nematode parasitism
[5, 8, 12–14]. Furthermore, the ability to propagate H.
bacteriophora in the immunology model Drosophila
melanogaster, allows the study of host responses to
PN infection mechanisms [15–17].
While the basic tools to develop H. bacteriophora as a

model organism have been or are in the process of being
developed [8, 13], genes directly involved in parasitism
are still poorly understood. Studies examining the tran-
scriptome of H. bacteriophora have been performed, but
our results described here is the first study, to our know-
ledge, to utilize advanced next-generation sequencing
technologies and the published H. bacteriophora genome
to examine the transcriptional program during host in-
vasion [18, 19]. A better understanding of this crucial
transition period could help define parasitism genes and
possibly allow the establishment of new interventions
that prevent infection of hosts. To begin teasing apart
the molecular biology of the early infection, we per-
formed next generation RNA sequencing on H. bacterio-
phora IJs incubated in Manduca sexta hemolymph
plasma for 9 h. Comparative analysis of the transcrip-
tome with untreated controls found a number of differ-
entially expressed genes (DEGs) which cover a number
of different functional categories. Furthermore, a subset
of the DEGs is conserved across Clade V parasitic nema-
todes. This subset of genes may serve as potential targets
for future studies investigating nematode parasitism.

Results
Illumina sequencing
RNA-sequencing using the Illumina HiSeq4000 platform
was performed on H. bacteriophora (TT01 strain) IJs
soaked for 9 h in M. sexta hemolymph plasma in order
to identify nematode genes that are expressed during the
initial stages of insect infection. Total RNA was collected
from six independent samples (three 9 h hemolymph
plasma treated and three untreated 0 h controls) to
characterize the transcriptome and measure differential
expression of genes. An outline of the pipeline used to
analyze RNA-seq data is shown in Additional file 1: Figure
S1. After quality checks and trimming, RNA-sequencing
yielded an average of ~41.8 million reads per sample, with
an average of 89.1% of control and 81.3% of hemolymph-
treated reads mapping to the H. bacteriophora genome.
There was an average of 4,084,703 and 8,600,584 un-
mapped reads for control and treated IJ respectively, mak-
ing the total number of mapped reads 33,554,746 and
37,399,072. Further details of the read mapping are shown
in Additional file 1: Table S1. Of the 20,964 genes con-
tained within the H. bacteriophora genome, 1641 were sig-
nificantly (p < 0.05) differentially expressed after a 9-h
exposure to hemolymph plasma. 881 of these DEGs were
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upregulated (fold change ≥ 2) and 760 were downregulated
(fold change ≤ −2) relative to the 0 h control.

Validation of RNA-seq by qRT-PCR
In order to confirm changes in expression observed by dif-
ferential expression analysis of RNA-seq data, qRT-PCR
was performed on selected genes. Genes with the largest
fold changes, either positive or negative and with signifi-
cant differential expression (p < 0.05), were used for valid-
ation. Genes used to test upregulation were Hba_07265
(logFC = 5.08), Hba_11987 (logFC = 3.02), Hba_15382
(logFC = 7.97), Hba_15540 (logFC = 6.47), and Hba_20350
(logFC = 3.75). Hba_05395 (logFC = −3.17), Hba_05947
(logFC = −3.33), Hba_15875 (logFC = −4.44), Hba_17909
(logFC = −3.31), and Hba_18611 (logFC = −2.81) were
used as representatives of downregulated genes. In order
to confirm differential regulation, qRT-PCR was also per-
formed on untreated control and hemolymph plasma
soaked IJs made independently of the samples used for
RNA-seq. Using rpl-32 as an expression control, the direc-
tionality of the calculated ΔΔCT values for the treated IJ
used for RNA-seq agreed with the changes observed in
the RNA-seq differential analysis (Fig. 1). The changes ob-
served by RNA-seq were also present in the samples made
exclusively for qRT-PCR.

GO analysis of RNA-seq data
Gene Ontology (GO) annotations of differentially expressed
genes were collected from the WormBase ParaSite Biomart
[20]. In order to better understand the functional distribu-
tion of the genes at a global level, WEGO software was
used to classify the terms into high level categories. The
1641 DEGs were annotated to 40 functional groups (Fig. 2).
10 groups were contained within the Cellular Component
root category, 10 in the Molecular Function root category,
and 20 in the Biological Process root. Within Cellular Com-
ponent, the groups containing the most genes were cell
(GO:0005623), organelle (GO:0043226) and macromolecu-
lar complex (GO:0032991). Within Molecular Function, a
large proportion of genes were categorized to catalytic ac-
tivity (GO:0003824), binding (GO:0005488), structural mol-
ecule activity (GO:0005198) and transporter activity
(GO:0005215). The categories of metabolic process
(GO:0008152), cellular process (GO:0009987), reproduction
(GO:0000003), developmental process (GO:0032502) and
growth (GO:0040007) contained a large number of genes
within the root level Biological Process category.
To further explore which, if any, GO terms were over-

represented, gene set enrichment analysis was performed
using the topGO R package [21]. Categories of signifi-
cance were found for each of the root GO categories
(Table 1). A total of 14 GO groups were found to be

Fig. 1 qRT-PCR of genes identified as differentially expressed by RNA-seq. Quantitative RT-PCR using rpl-32 as an expression control was per-
formed on samples used for RNA-seq to confirm changes in expression. Additionally, qRT-PCR was also performed on a set of samples prepared
independently from the samples used for RNA-seq to further validate expression changes. ΔΔCT values are relative to matched control samples.
Similar changes in expression were seen in both the RNA-seq and independent samples. Error bars represent SEM
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enriched at an unadjusted p-value < 0.05. The groups
include metabolic process, cell cycle, body morpho-
genesis, carbohydrate metabolic process, cytoplasm,
endoplasmic reticulum, translation elongation factor
activity and acid phosphatase activity. The most sig-
nificantly enriched groups (unadjusted p < 0.001) were

proteolysis (GO:0006508) and structural constituents
of the ribosome (GO:0003735).

KEGG annotations
In addition to annotating DEGs with GO terms, Kyoto
Encyclopedia of Genes and Genomes KEGG functional

Fig. 2 Common GO annotations of DEGs. GO terms were condensed into higher order functional categories using WEGO, in order to more easily
understand global changes of expression. Changes were seen in a number of different functional categories with the most occurring in the
Biological Process GO domain

Table 1 Significantly enriched GO terms in DEGs

GO Domain Go Accession GO Term Number of Genes
(Significant/Total Annotated)

p-value
(Fisher’s Exact Test)

Molecular Function GO:0003735 structural constituent of ribosome 39/52 <1E-20

Biological Process GO:0006508 proteolysis 26/103 1.07E-05

Molecular Function GO:0003746 translation elongation factor activity 3/3 0.00167

Molecular Function GO:0003993 acid phosphatase activity 5/10 0.00351

Biological Process GO:0010171 body morphogenesis 3/4 0.00744

Biological Process GO:0008152 metabolic process 105/673 0.01048

Molecular Function GO:0016788 hydrolase activity, acting on ester bonds 10/35 0.02239

Molecular Function GO:0004129 cytochrome-c oxidase activity 3/6 0.02535

Molecular Function GO:0016810 hydrolase activity, acting on carbon-nitrogen
(but not peptide) bonds

4/8 0.03872

Molecular Function GO:0004359 glutaminase activity 2/3 0.039

Molecular Function GO:0008137 NADH dehydrogenase (ubiquinone) activity 2/3 0.039

Cellular Component GO:0005737 cytoplasm 19/97 0.0408

Biological Process GO:0005975 carbohydrate metabolic process 14/66 0.04955

Cellular Component GO:0005789 endoplasmic reticulum 2/3 0.0496
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categories and pathways were also found. KEGG func-
tional categories covered enzymes (Enzymes, Protein
phosphatases and associated proteins, Peptidases,
Chaperones and folding catalysts) and nucleic acid ma-
chinery (Ribosome, Chromosome, Ribosome biogenesis,
Messenger RNA biogenesis and DNA replication pro-
teins). Similarly, KEGG pathway annotation identified
pathways involved in ribosome biogenesis and protein
processing pathways (Fig. 3).

Comparison of DEGs with different nematode clades and
representative species
In order to identify a set of common PN genes expressed
during the early stages of infection, a series of data filters
were used on genes identified as significantly changed
(FC ≥ 2 or FC ≤ −2, p < 0.05) during differential expres-
sion analysis. Protein sequences of DEGs were blasted
against all sequenced nematode genomes in each clade
(H. bacteriophora was excluded from the Clade V blast).
Alignments were considered matches if the percent
identity was greater than or equal to 60 and the e-value
was less than 0.00005. The greatest number of shared
genes (802) was between H. bacteriophora and Clade V.
A total of 130 genes were found to be common between

H. bacteriophora and the nematodes of Clades I, III, IV
and V (Fig. 4). GO annotation was performed on the
genes within the common pool. The genes were primar-
ily categorized to groups involving reproduction, devel-
opment and growth.
Due to the DEGs predominantly aligning with Clade V

nematodes, further comparisons between parasites and
H. bacteriophora were made using only Clade V nema-
todes. A second blast of the 1641 genes was performed
against the genomes of C. elegans, Ancylostoma ceylani-
cum, Necator americanus and Haemonchus contortus.
The same criteria used for the blast against nematode
clades were used to determine if alignments were
matches with the above nematodes. After analysis, 551
genes were hits for C. elegans genes, 790 genes matched
A. ceylanicum, 706 genes matched N. americanus, and
363 genes matched H. contortus. 226 of the genes were
held in common by the four nematode species and H.
bacteriophora, while 75 genes were shared between the
parasitic nematodes A. ceylanicum, H. contortus and N.
americanus (Fig. 5). Of the 75 genes, only 45 had anno-
tation data available in the ParaSite Biomart database.
The GO terms, InterPro ID and other protein informa-
tion for the 45 matches are shown in Table 2.

Fig. 3 KEGG functional and pathway annotations for DEGs. Using the peptide sequences of DEGs, functional and pathway annotations were
found using the KEGG Automatic Annotation Server and eggNOG, respectively. Annotations covered a variety of different pathway and functional
annotations. The 20 most represented categories by KAAS and eggNOG annotation are shown
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Identification of genes activated during the initial stages
of host infection
Upregulated DEGs were further analyzed to determine if
any genes could be identified as highly conserved PN
genes. Out of the 239 differentially expressed up regulated
genes (p < 0.05, FDR < 0.05, FC ≥ 2), 52 genes (21.8%) were
found to contain a classic or non-classical signal peptide,
and to be non-orthologous to C. elegans but orthologous
to A. ceylanicum (Bioproject PRJNA231479). Of these 52
H. bacteriophora genes, 17 were determined to be initial
activation candidates due to either the identification of
proteins and/or molecular mechanisms believed to be in-
volved in parasitism (by GO grouping and InterPro ID) or
the lack of any identifiable protein motifs (Table 3). Of the
17 genes, 16 were identified as having enzymatic motifs,
including both hydrolases and kinases. The remaining

gene, Hba_13349, was identified as being involved in
membrane transport.

Discussion
Parasitic nematode infections continue to pose a consider-
able burden to human health. However, the obligate need
for a vertebrate host has made efforts to study the molecu-
lar mechanisms of parasitic infection intractable and high-
lights the need for an analogous model nematode. Due to
its life cycle and recent studies, the possibility of develop-
ing and using H. bacteriophora as a model for parasitic in-
fections has grown. Basic advances in the development of
a molecular toolbox and the publication of its genome
provides a way for manipulating and identifying the func-
tion of parasitic genes [5, 8, 13, 19]. In order to create a
smaller list of genes involved in infection for future

Fig. 4 Distribution of DEGs across nematode clades. Overlaps between alignments between H. bacteriophora and different nematode clades were
found using Venny 2.1. The majority of alignments were exclusive to Clade V (excluding H. bacteriophora). However a number of genes were
shared between all Clades and single genes were annotated to multiple GO categories. The top fifteen GO categories for the 130 genes shared
by all clades are shown in the table below the diagram
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investigation, we performed RNA-seq on H. bacterio-
phora strain TT01 IJs incubated in hemolymph plasma
for 9 h. After differential expression analysis, a total of
1641 genes were identified as being differentially
expressed after a 9 h exposure to hemolymph plasma.
Hemolymph plasma from Manduca sexta was selected
as an activation media because M. sexta is a natural
host, and its large size facilitates extraction of large
quantities of hemolymph. Previous studies identified
hemolymph soaking as a valid method for inducing syn-
chronous activation of entomopathogenic IJs, while also
allowing for the mass activation of IJs necessary to pro-
duce enough high quality RNA for RNA-seq [19, 22–24].
Additionally, our pilot studies used to determine the max-
imum concentration of IJs per milliliter hemolymph
plasma showed IJs develop into J4s within 48 h of soaking
and continue to adults by 72 h (data not shown). After
1 week of soaking in hemolymph plasma, multiple genera-
tions of nematodes were present.
Assignment of GO terms to DEGs categorized 769

of the genes to probable functions. Some of the most
represented functional categories included reproduction,
reproductive process, developmental process, binding
and catalytic activity. By checking for overrepresented
GO terms, we found a number of genes involved in
proteolysis, acid phosphatase activity, NADH dehydro-
genase (ubiquinone) activity and hydrolases, as well as
sequences associated with ribosomal constituents and
translation elongation factors. Also, a number of over-
represented terms were also found in categories re-
lated to development such as body morphogenesis,

carbohydrate metabolism and metabolic processes, con-
sistent with the resumption of development by the IJs.
KEGG functional categories and pathways were also

assigned to DEGs. KEGG assignments showed similar
categories as the overrepresented GO terms. A large
number of sequences were categorically assigned ribo-
some, ribosome biogenesis, messenger RNA biogenesis,
cytoskeleton proteins and chaperones and folding cata-
lysts suggesting upregulation in protein production is
necessary to exit the developmentally arrested dauer
stage. Also seen in the KEGG functional categories again
are protein phosphatases and associated proteins, ubi-
quitin system and peptidases. While the KEGG and GO
analysis does not provide enough resolution to identify
parasitic genes directly, the recurrence and overrepre-
sentation of proteolytic enzymes suggests some of these
genes may be involved in the production of proteins/cat-
alysts necessary for parasitism. This idea is further sup-
ported by an increase in the transporters category since
gene products important for PN-host interactions are
likely secreted into host tissues. The KEGG pathway as-
signments mirror the KEGG functional categories by
also showing a number of genes involved in biosynthesis
of secondary metabolites, protein processing in endo-
plasmic reticulum, ribosome biogenesis and lysosome.
In an attempt to identify common parasitic genes, a

series of protein blasts were performed against each
nematode clade and also against representative nema-
todes of Clade V. Blasting the protein sequences of the
H. bacteriophora DEGs against all nematodes included
in Clades I, III, IV and V (not including H. bacterio-
phora) returned 172, 405, 263 and 802 gene hits respect-
ively. As expected, the majority of hits (397 genes) were
found only in Clade V due to H. bacterophora’s close
phylogenetic relationship with its members. Interest-
ingly, while there is overlap with Clades III and IV, there
are 405 hits with Clade III and only 263 with Clade IV.
Given their phylogenetic relationship to Clade V, hits
would be expected to decrease as the distance between
clades increases. The blast searches by clade also suggest
a subset of “pan-nematode” genes (130) which are shared
by all four of the clades surveyed. GO term assignment
identifies these genes as being involved in embryo develop-
ment, reproduction, nematode larval development, life
cycle development and growth. Given the apparent conser-
vation of genes related to reproduction and development,
it is possible these genes represent the basic genetic needs
for the reproduction and development of nematodes.
Given the relatively large number of hits with Clade V

nematodes, another protein blast was performed in
order to further investigate the presence of a set of PN
genes. For this reason, this Clade V blast was limited to
A. ceylanicum, H. contortus, N. americanus and C. ele-
gans. While C. elegans is not a parasitic nematode, given

Fig. 5 Distribution of DEGs across clade V parasitic nematodes and
C. elegans. Overlaps between alignments between H. bacteriophora
and different Clade V nematodes were found using Venny 2.1. While
226 genes were found to be common between C. elegans and the
parasitic nematodes surveyed, a subset of 75 genes was shared
among parasitic nematodes

Vadnal et al. BMC Genomics  (2017) 18:8 Page 7 of 14



Ta
b
le

2
C
om

m
on

ge
ne

s
of

cl
ad
e
V
pa
ra
si
tic

ne
m
at
od

es

G
en

e
st
ab
le
ID

G
O
te
rm

ac
ce
ss
io
n

G
O
te
rm

na
m
e

In
te
rP
ro

ID
In
te
rP
ro

sh
or
t
de

sc
rip

tio
n

Si
gn

al
Pr
es
en

t
C
oi
le
d
co
ils

Tr
an
sm

em
br
an
e
do

m
ai
n

H
ba
_0
04
15

G
O
:0
01
60
21

in
te
gr
al
co
m
po

ne
nt

of
m
em

br
an
e

IP
R0
10
76
1

C
lc
_p

ro
t-
lik
e

-
-

TM
he

lix

H
ba
_0
31
56

G
O
:0
05
06
60

fla
vi
n
ad
en

in
e
di
nu

cl
eo

tid
e
bi
nd

in
g

IP
R0
04
11
3

FA
D
-li
nk
ed

_o
xi
da
se
_C

-
-

TM
he

lix

H
ba
_0
54
67

G
O
:0
00
68
10

tr
an
sp
or
t

IP
R0
03
43
9

A
BC

_t
ra
ns
po

rt
er
-li
ke

-
-

TM
he

lix

H
ba
_0
63
97

G
O
:0
00
59
75

ca
rb
oh

yd
ra
te

m
et
ab
ol
ic
pr
oc
es
s

IP
R0
01
22
3

G
ly
co
_h

yd
ro
18
ca
t

-
-

-

H
ba
_0
64
67

G
O
:0
00
70
17

m
ic
ro
tu
bu

le
-b
as
ed

pr
oc
es
s

IP
R0
01
37
2

D
yn
ei
n_

lig
ht
_c
ha
in
_t
yp
-1
/2

-
-

-

H
ba
_0
67
70

G
O
:0
00
59
75

ca
rb
oh

yd
ra
te

m
et
ab
ol
ic
pr
oc
es
s

IP
R0
01
36
0

G
ly
co
_h

yd
ro
_1

-
-

-

H
ba
_0
68
75

G
O
:0
00
59
21

ga
p
ju
nc
tio

n
IP
R0
00
99
0

In
ne

xi
n

-
-

TM
he

lix

H
ba
_0
68
76

G
O
:0
00
59
21

ga
p
ju
nc
tio

n
IP
R0
00
99
0

In
ne

xi
n

-
-

TM
he

lix

H
ba
_0
68
77

G
O
:0
00
59
21

ga
p
ju
nc
tio

n
IP
R0
00
99
0

In
ne

xi
n

-
-

-

H
ba
_0
75
56

G
O
:0
00
68
10

tr
an
sp
or
t

IP
R0
02
25
9

Eq
nu

_t
ra
ns
pt

-
-

TM
he

lix

H
ba
_0
75
57

G
O
:0
00
68
10

tr
an
sp
or
t

IP
R0
02
25
9

Eq
nu

_t
ra
ns
pt

-
-

TM
he

lix

H
ba
_0
85
73

G
O
:0
01
60
20

m
em

br
an
e

IP
R0
06
02
9

N
eu
ro
tr
an
s-
ga
te
d_

ch
an
ne

l_
TM

-
-

TM
he

lix

H
ba
_0
89
39

G
O
:0
00
48
71

si
gn

al
tr
an
sd
uc
er

ac
tiv
ity

IP
R0
15
89
8

G
-p
ro
te
in
_g

am
m
a-
lik
e_
do

m
-

-
-

H
ba
_0
91
40

G
O
:0
01
60
20

m
em

br
an
e

IP
R0
07
26
5

C
O
G
_s
u3

-
-

TM
he

lix

H
ba
_0
97
04

G
O
:0
00
55
15

pr
ot
ei
n
bi
nd

in
g

IP
R0
01
61
1

Le
u-
ric
h_

rp
t

-
C
oi
l

TM
he

lix

H
ba
_0
99
19

G
O
:0
00
63
34

nu
cl
eo

so
m
e
as
se
m
bl
y

IP
R0
02
16
4

N
A
P_
fa
m
ily

-
-

-

H
ba
_1
03
71

G
O
:0
00
55
24

A
TP

bi
nd

in
g

IP
R0
04
52
3

A
sp
-t
RN

A
_s
yn
th
as
e

-
-

-

H
ba
_1
06
98

G
O
:0
04
00
10

po
si
tiv
e
re
gu

la
tio

n
of

gr
ow

th
ra
te

IP
R0
26
84
7

VP
S1
3

-
-

TM
he

lix

H
ba
_1
18
50

G
O
:0
00
36
77

D
N
A
bi
nd

in
g

IP
R0
00
53
6

N
uc
l_
hr
m
n_

rc
pt
_l
ig
-b
d_

co
re

-
-

-

H
ba
_1
22
67

G
O
:0
00
01
38

G
ol
gi

tr
an
s
ci
st
er
na

IP
R0
07
25
8

Vp
s5
2

-
-

TM
he

lix

H
ba
_1
24
51

G
O
:0
00
55
15

pr
ot
ei
n
bi
nd

in
g

IP
R0
00
62
6

U
bi
qu

iti
n_

do
m

-
C
oi
l

-

H
ba
_1
32
53

G
O
:0
00
55
15

pr
ot
ei
n
bi
nd

in
g

IP
R0
00
21
0

BT
B/
PO

Z-
lik
e

-
-

-

H
ba
_1
33
49

G
O
:0
01
60
21

in
te
gr
al
co
m
po

ne
nt

of
m
em

br
an
e

IP
R0
11
70
1

M
FS

-
-

TM
he

lix

H
ba
_1
39
17

G
O
:0
01
60
20

m
em

br
an
e

IP
R0
05
02
7

G
ly
co
_t
ra
ns
_4
3

-
-

-

H
ba
_1
40
55

G
O
:0
01
60
20

m
em

br
an
e

IP
R0
02
15
9

C
D
36

-
-

TM
he

lix

H
ba
_1
46
09

G
O
:0
00
97
92

em
br
yo

de
ve
lo
pm

en
t
en

di
ng

in
bi
rt
h
or

eg
g
ha
tc
hi
ng

-
-

-
-

-

H
ba
_1
46
79

G
O
:0
00
55
15

pr
ot
ei
n
bi
nd

in
g

IP
R0
01
61
1

Le
u-
ric
h_

rp
t

Si
gn

al
P-
no

TM
-

-

H
ba
_1
47
42

G
O
:0
00
11
04

RN
A
po

ly
m
er
as
e
II
tr
an
sc
rip

tio
n
co
fa
ct
or

ac
tiv
ity

IP
R0
19
14
5

M
ed

ia
to
r_
M
ed

10
-

C
oi
l

-

H
ba
_1
49
27

G
O
:0
00
61
89

‘d
e
no

vo
’I
M
P
bi
os
yn
th
et
ic
pr
oc
es
s

IP
R0
00
03
1

Pu
rE
_d

om
-

-
-

H
ba
_1
50
73

G
O
:0
00
63
55

re
gu

la
tio

n
of

tr
an
sc
rip

tio
n,
D
N
A
-t
em

pl
at
ed

IP
R0
00
53
6

N
uc
l_
hr
m
n_

rc
pt
_l
ig
-b
d_

co
re

-
-

-

H
ba
_1
59
94

G
O
:0
00
56
34

nu
cl
eu
s

IP
R0
02
99
9

Tu
do

r
-

-
-

H
ba
_1
73
50

G
O
:0
00
62
70

D
N
A
re
pl
ic
at
io
n
in
iti
at
io
n

IP
R0
03
87
4

C
D
C
45

-
-

-

H
ba
_1
73
94

G
O
:0
00
65
08

pr
ot
eo

ly
si
s

IP
R0
01
96
9

A
sp
ar
tic
_p

ep
tid

as
e_
A
S

Si
gn

al
P-
no

TM
-

-

Vadnal et al. BMC Genomics  (2017) 18:8 Page 8 of 14



Ta
b
le

2
C
om

m
on

ge
ne

s
of

cl
ad
e
V
pa
ra
si
tic

ne
m
at
od

es
(C
on

tin
ue
d)

H
ba
_1
74
12

G
O
:0
01
60
20

m
em

br
an
e

IP
R0
00
73
1

SS
D

-
-

TM
he

lix

H
ba
_1
83
46

G
O
:0
00
64
57

pr
ot
ei
n
fo
ld
in
g

IP
R0
02
77
7

PF
D
_b

et
a-
lik
e

-
C
oi
l

-

H
ba
_1
87
55

G
O
:0
00
81
46

su
lfo
tr
an
sf
er
as
e
ac
tiv
ity

IP
R0
00
86
3

Su
lfo
tr
an
sf
er
as
e_
do

m
-

-
-

H
ba
_1
99
83

G
O
:0
00
37
77

m
ic
ro
tu
bu

le
m
ot
or

ac
tiv
ity

IP
R0
13
59
4

D
yn
ei
n_

he
av
y_
do

m
-1

-
C
oi
l

-

H
ba
_2
00
09

G
O
:0
00
97
92

em
br
yo

de
ve
lo
pm

en
t
en

di
ng

in
bi
rt
h
or

eg
g
ha
tc
hi
ng

IP
R0
07
05
1

C
H
O
RD

-
-

-

H
ba
_2
01
21

G
O
:0
00
97
92

em
br
yo

de
ve
lo
pm

en
t
en

di
ng

in
bi
rt
h
or

eg
g
ha
tc
hi
ng

-
-

-
-

-

H
ba
_2
01
27

G
O
:0
05
51
14

ox
id
at
io
n-
re
du

ct
io
n
pr
oc
es
s

IP
R0
08
97
2

C
up

re
do

xi
n

-
-

-

H
ba
_2
02
82

G
O
:0
01
60
21

in
te
gr
al
co
m
po

ne
nt

of
m
em

br
an
e

IP
R0
08
85
5

TR
A
P-
de

lta
Si
gn

al
P-
no

TM
-

-

H
ba
_2
07
82

G
O
:0
00
55
15

pr
ot
ei
n
bi
nd

in
g

IP
R0
03
17
2

M
L_
do

m
-

-
-

H
ba
_2
08
70

G
O
:0
01
60
20

m
em

br
an
e

IP
R0
03
49
2

Ba
tt
en

in
_d

is
ea
se
_C

ln
3

-
-

TM
he

lix

H
ba
_2
12
14

G
O
:0
00
45
68

ch
iti
na
se

ac
tiv
ity

IP
R0
00
72
6

G
ly
co
_h

yd
ro
_1
9_
ca
t

Si
gn

al
P-
no

TM
-

-

H
ba
_2
12
97

G
O
:0
00
37
23

RN
A
bi
nd

in
g

IP
R0
01
04
0

TI
F_
eI
F_
4E

-
-

-

Vadnal et al. BMC Genomics  (2017) 18:8 Page 9 of 14



the deep understanding and robust annotation of its
genome, it was included in order to further separate
Clade V nematode genes from the highly conserved
genes of Clade V PNs. While a number of DEGs were
found to hit each nematode surveyed, 75 genes were
found to be shared by A. ceylanicum, H. contortus and
N. americanus. Of these 75 genes, 30 have no GO, Inter-
Pro ID or protein motifs assigned in the ParaSite Bio-
mart database. The 45 remaining genes contain a variety
of different functional categories, but are predominantly
represented by categories involved in growth and devel-
opment. However, some proteins of possible parasitic
interest are present. Most notably, 4 genes (Hba_14679,
Hba_17394, Hba_20282 and Hba_21214) contain signal
peptides with no transmembrane region. Hba_14679
contains a protein motif for leucine-rich repeats, which
serve as structural supports for protein-protein interac-
tions [25]. While a wide variety of proteins make use of
these supports, given the presence of a signaling peptide,
the product of Hba_14679 may play a role in host-
parasite interactions external to the worm. Hba_20282
contains a motif for the delta subunit precursor of a
translocon. While the exact function of this protein is
unknown, translocons are known to transport peptides
across membranes. Within eukaryotes translocons are
commonly used to transfer polypeptides into the endo-
plasmic reticulum [26]. However, in prokaryotes, trans-
locons can be assembled to export virulence factors
outside of the cell [27, 28] While this protein may serve
no other purpose than shuttling molecules into the
endoplasmic reticulum, its conservation between 4

different parasites suggests that it may be needed for the
transport of parasitism factors.
Hba_17394 and Hba_21214 are both enzymes which

may be externally secreted since they both contain signal
peptides. Hba_17394 is identified to have an aspartic
peptidase motif. While further functional investigation is
necessary for an exact identity, aspartic peptidases are
known to have a range of functions from the digestion
of peptides to the production of active proteins from
precursor proteins [29, 30]. Within parasites, such a
peptidase could be secreted for use as a virulence factor.
Hba_21214 contains a protein motif for a glycoside
hydrolase, family 19. Glycoside hydrolases are chitinases
which break down glycosidic bonds between carbohy-
drates [31]. Chitinases are most commonly used as
defense mechanisms to break down the cell walls of fun-
gal and insect pathogens [32–34]. Within H. bacterio-
phora, the presence of a chitinase seems obligate since
the digestion of chitin would be necessary upon infec-
tion of a host insect. However, given its presence across
several parasitic nematodes, it is possible a secreted chit-
inase may serve a more general role in parasitism [35].
Given that any likely parasitism genes would poten-

tially be upregulated upon exposure to a host, further
analyses was carried out to identify any upregulated
DEGs conserved within parasitic nematodes by compari-
son to A. ceylanicum (Bioproject PRJNA231479). Out of
861 upregulated DEGs, 239 had a false discovery rate
less than 0.05. Of these 239 genes, 17 genes were identi-
fied as being potential conserved parasitism genes due
to being orthologous to A. ceylanicum and containing a

Table 3 Highly conserved clade V parasitic nematode genes upregulated in H. bacteriophora incubated in hemolymph plasma

Gene ID GO Accession GO Name InterPro ID InterPro Description

Hba_05422 GO:0005515 Protein binding IPR011105 Cell_wall_hydrolase_SleB

Hba_06426 GO:0004190 Aspartic-type endopeptidase activity IPR021109 Peptidase_aspartic_dom

Hba_07292 GO:0016758 Transferase activity, transferring hexosyl groups IPR002213 UDP_glucos_trans

Hba_07973 GO:0004181 Metallocarboxypeptidase activity IPR000834 Peptidase_M14

Hba_08473 GO:0008483 Transaminase activity IPR005814 Aminotrans_3

Hba_11636 GO:0004185 Serine-type carboxypeptidase activity IPR001563 Peptidase_S10

Hba_11637 GO:0004185 Serine-type carboxypeptidase activity IPR001563 Peptidase_S10

Hba_13000 GO:0008236 Serine-type peptidase activity IPR008758 Peptidase_S28

Hba_13072 GO:0008378 Galactosyltransferase activity IPR002659 Glyco_trans_31

Hba_13349 GO:0055085 Transmembrane transport IPR020846 MFS_dom

Hba_13477 GO:0004672 Protein kinase activity IPR011009 Kinase-like_dom

Hba_14122 GO:0003993 Acid phosphatase activity IPR029033 His_PPase_superfam

Hba_15308 GO:0008234 Cysteine-type peptidase activity IPR013128 Peptidase_C1A

Hba_17215 GO:0003824 Catalytic activity IPR031319 A-amylase_C

Hba_19909 GO:0003796 Lysozyme activity IPR008597 Destabilase

Hba_20878 GO:0055085 Transmembrane transport IPR020846 MFS_dom

Hba_20939 GO:0003993 Acid phosphatase activity IPR029033 His_PPase_superfam
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signal peptide without a transmembrane region and
lacking orthology with free-living nematodes. The major-
ity of these genes (16) were identified to have enzymatic
protein motifs by InterPro ID. These enzymes include
peptidases (7), phosphatases (2) and a kinase. The non-
catalytic peptide is identified as having a transmembrane
transport motif. While individually, the peptidases listed
in Table 2 could be present for a number of different
biological processes, their inclusion as secreted peptides
orthologous to A. ceylanicum and non-orthologous with
C. elegans suggests they are conserved parasitism genes.
Furthermore, it is possible these genes are involved in
the mechanisms of parasitism either as virulence factors
or modulators of the host immune system.

Conclusions
Taken together, our RNA-Seq analysis reveals transcrip-
tional changes in the regulation of a large number of genes,
most of which have not been shown previously to play a
role in parasitic responses. A significant proportion of these
genes are conserved amongst closely related parasitic nema-
todes, suggesting the identification of a group of parasitism
factors within nematodes. These genes provide ideal candi-
dates for functional characterization using recently devel-
oped tools in H. bacteriophora to dissect the contribution of
these genes in infection. While our selection criteria poten-
tially misses some genes of interest, future studies using
these candidates, in addition to further data-mining of our
sequencing data, will not only provide functional insight
into the process of nematode parasitism but may also shed
light on the evolution of parasitism within nematodes as
our data also reveals the existence of conserved genes
amongst PN that are upregulated during early infection.

Methods
Culturing of Heterorhabditis bacteriophora TT01
Heterorhabditis bacteriophora strain TT01 was main-
tained by infecting Galleria mellonella larvae. Briefly, 20
G. mellonella, approximately 5th to 6th instar, were
placed onto 8.5 cm filter papers held in 9 cm petri
dishes. Approximately 100 IJs per larva were added to
the filter paper (~1 mL total volume) and placed in a re-
sealable bag in the dark at room temperature for incuba-
tion. After 10 days, infected insects turned brick red in
color and were transferred to a White trap [36] containing
distilled water with 0.01% Tween 20. Thirteen to fifteen
days post-infection the IJs began to emerge from the car-
casses and entered the liquid. After 7 days on the trap, IJs
were collected and transferred to sterile culture flasks
until use. IJs were used within 3 weeks of collection.

Hemolymph plasma extraction from Manduca sexta
Five 5th instar Manduca sexta larvae were placed on ice
for 15 min. The posterior end of the insect was sterilized

with an alcohol wipe and using aseptic technique, an in-
cision was made at the distal end of the insect’s horn.
The insect was gently exsanguinated by squeezing, and
the hemolymph was collected in a sterile 2 mL micro-
fuge tube on ice. To inhibit melanization, a solution of
20 mM phenylthiocarbamide in phosphate buffered saline
was immediately added to the hemolymph at a final con-
centration of 0.33 mM. In order to further inhibit melani-
zation of the hemolymph during incubation, the
hemolymph was centrifuged at 4 °C for 5 min at 4000 × g
to precipitate the hemocytes. The resulting hemolymph
plasma was diluted 1:1 with Ringer’s solution (100 mM
NaCl, 1.8 mM KCl, 2 mM CaCl2, 1 mM MgCl2, 5 mM
HEPES, pH 6.9) and filtered through a 0.45 μm syringe fil-
ter. Hemolymph plasma samples were stored at −80 °C
until needed.

Infective juvenile incubation in hemolymph plasma
solution
Approximately 50,000H. bacteriophora TT01 infective
juveniles were surface-sterilized with 10 mL of 3% com-
mercial bleach in Ringer’s solution (hypochlorite final
concentration of 0.26%) for 5 min. The nematodes were
centrifuged at 500 × g for 2 min at room temperature.
The resulting pellet was washed three times with 10 mL
sterile Ringer’s solution and centrifuged. The nematode
pellet was either suspended in 2 mL of hemolymph
plasma solution and transferred to a 12.5 cm2 tissue
flask or reserved as a 0 h control. Tissue flasks were in-
cubated for 9 h in the dark at 27 °C with shaking at 300
RPM. The flask contents were transferred to a sterile
15 mL conical tube and centrifuged at 1100 × g at room
temperature for 2 min. The pelleted nematodes were
washed a total of three times with 10 mL sterile Ringer’s
solution with centrifugation at 1100 × g between washes.
The pellet was suspended in 500 μL ice-cold Trizol re-
agent (Thermo Fisher) and transferred to a 1.5 mL
microfuge tube containing 1.4 g of 0.5 mm zirconium
oxide beads. Tubes were placed in a Bullet Blender Blue
(NextAdvance, Averill Park, NY) and lysed (3 cycles of
5 min at speed 10, with a 2 min rest on ice between each
cycle). The resulting homogenate was transferred to a
clean microfuge tube and an additional 500 μL of Trizol
was added. RNA purification was carried out using the
Trizol RNA Plus Purification Kit according to the manu-
facturer’s protocol and the PureLink DNase protocol
was used to remove contaminating DNA. RNA from 0 h
IJs was isolated as above, with the exception that RNA
extraction began immediately after washing the surface
sterilized IJs. RNA samples were analyzed for quantity and
quality using an Agilent 2100 Bioanalyzer with the RNA
6000 Nano Kit. Samples with a RIN greater than 9.0 were
sent to the Institute for Genome Sciences (University of
Maryland School of Medicine) for RNA-Seq using the
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Illumina HiSeq4000 platform with 150 bp, paired-end
sequencing. RNA-seq libraries were prepared using
the TruSeq RNA Sample Prep Kit (Illumina, San
Diego, CA). Double-stranded cDNA was ligated to
seven indexed nucleotide adapters and purified be-
tween enzymatic reactions. Library size selection was
performed using SPRIselect beads (Beckman Coulter
Genomics, Danvers, MA).

RNA-Seq analysis using subread and edgeR
Illumina adapter sequences, leading and trailing bases
and low quality base reads (Phred-64 score < 15) were
removed from RNA-Seq data using Trimmomatic (ver-
sion 0.33) [37]. After trimming, only reads greater than
or equal to 25 bases were retained. Reads were then
mapped to the H. bacteriophora genome (Bioproject
PRJNA13977) [5] using subread-aligner (version 1.5.0-
p1) and the H. bacteriophora genome [38]. The aligned
reads were counted using featureCounts and differential
expression analysis was performed using the edgeR
package’s quasi-likelihood F test [39, 40]. Genes were
considered differentially expressed if they had a p-value
< 0.05 and a fold change ≥ 2 or a fold change ≤ −2.

qRT-PCR validation of RNA-seq
Selected DEGs were validated by qRT-PCR using the
Brilliant II SYBR Green QRT-PCR 1-step Master Mix
(Agilent Technologies) and CFX96 Real-Time System
(Bio-Rad Laboratories) with Hba-rpl-32 as an expression
control. Primer efficiencies for primers targeting the se-
lected DEGs were determined using serial dilutions
(0.001 to 100 ng total RNA) of RNA extracted from un-
treated IJs, while the rpl-32 primers used were previ-
ously published [8]. PCR reactions were carried out
using the manufacturer’s suggested two-step protocol
with an annealing temperature of 55 °C and a dissoci-
ation curve performed at the end of the run. In addition
to validating expression in samples used for RNA-seq,
changes in expression were also verified in an additional
set of samples prepared by incubating IJs in hemolymph
plasma, as described above. Differential expression was
measured using the ΔΔCT method, using matched, un-
treated IJs as relative controls.

Annotation and analysis of differentially expressed genes
DEGs were annotated and further analyzed using a variety
of bioinformatic tools and databases. Peptide sequences,
C. elegans orthologues, GO terms, InterProScan IDs,
transmembrane regions, coiled coils and classical
secretory sequences were gathered from the WormBase
ParaSite Biomart database for H. bacteriophora [41]. Non-
classical secretory peptides were found using SecretomeP
v1.0f [42]. In order to better understand global gene ontol-
ogy classifications, terms were condensed into higher

functional categories using WEGO [43]. To determine if
any GO terms were significantly over-represented, an en-
richment analysis was performed with the topGO R pack-
age using Fisher’s exact test and the default hybrid classic/
elim algorithm [21]. Annotation of KEGG pathways was
performed using the peptide sequences of the DEGs and
eggNOG verion 4.5 [44]. KEGG functional annotations
were also gathered using the same peptide sequences and
the KEGG Automatic Annotation Server [45]. Orthology
between DEGs and other nematodes was examined using
blastp and the genomes available for Clade I, Clade III,
Clade IV and Clade V (excluding H. bacteriophora)
nematodes. Blast results were considered hits if the
aligned sequence had percent identity greater than
60% and an e-value less than 0.00005. Overlaps between
alignments from different search targets (e.g. Clades I, III,
IV and V) were found and graphed using Venny 2.1 [46].

Additional file

Additional file 1: Table S1. Summary of Illumina sequencing reads.
Figure S1 RNA-seq Analysis Pipeline. Pipeline used to collect, trim and
analyze RNA-seq data. RNA sequencing reactions were performed by the
Institute of Genome Sciences (University of Maryland School of Medicine)
using high quality total RNA obtained from IJs incubated in hemolymph
plasma (9 h) or Ringer’s solution (0 h). The resulting reads were trimmed,
screened for quality and mapped to the H. bacteriophora reference gen-
ome. Expression analysis for DEGs was performed using the edgeR pack-
age (PDF 634 kb)
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