
Himmelfarb Health Sciences Library, The George Washington University
Health Sciences Research Commons
Environmental and Occupational Health Faculty
Publications Environmental and Occupational Health

8-1-2017

Colonizing Opportunistic Pathogens (COPs): The
Beasts in All of Us.
Lance B Price
George Washington University

Bruce A Hungate

Benjamin J Koch

Gregg S Davis
George Washington University

Cindy M Liu
George Washington University

Follow this and additional works at: https://hsrc.himmelfarb.gwu.edu/sphhs_enviro_facpubs

Part of the Environmental Public Health Commons, and the Occupational Health and Industrial
Hygiene Commons

This Journal Article is brought to you for free and open access by the Environmental and Occupational Health at Health Sciences Research Commons.
It has been accepted for inclusion in Environmental and Occupational Health Faculty Publications by an authorized administrator of Health Sciences
Research Commons. For more information, please contact hsrc@gwu.edu.

APA Citation
Price, L., Hungate, B., Koch, B., Davis, G., & Liu, C. (2017). Colonizing Opportunistic Pathogens (COPs): The Beasts in All of Us..
PLoS Pathogens, 13 (8). http://dx.doi.org/10.1371/journal.ppat.1006369

https://hsrc.himmelfarb.gwu.edu?utm_source=hsrc.himmelfarb.gwu.edu%2Fsphhs_enviro_facpubs%2F237&utm_medium=PDF&utm_campaign=PDFCoverPages
https://hsrc.himmelfarb.gwu.edu/sphhs_enviro_facpubs?utm_source=hsrc.himmelfarb.gwu.edu%2Fsphhs_enviro_facpubs%2F237&utm_medium=PDF&utm_campaign=PDFCoverPages
https://hsrc.himmelfarb.gwu.edu/sphhs_enviro_facpubs?utm_source=hsrc.himmelfarb.gwu.edu%2Fsphhs_enviro_facpubs%2F237&utm_medium=PDF&utm_campaign=PDFCoverPages
https://hsrc.himmelfarb.gwu.edu/sphhs_enviro?utm_source=hsrc.himmelfarb.gwu.edu%2Fsphhs_enviro_facpubs%2F237&utm_medium=PDF&utm_campaign=PDFCoverPages
https://hsrc.himmelfarb.gwu.edu/sphhs_enviro_facpubs?utm_source=hsrc.himmelfarb.gwu.edu%2Fsphhs_enviro_facpubs%2F237&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/739?utm_source=hsrc.himmelfarb.gwu.edu%2Fsphhs_enviro_facpubs%2F237&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/742?utm_source=hsrc.himmelfarb.gwu.edu%2Fsphhs_enviro_facpubs%2F237&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/742?utm_source=hsrc.himmelfarb.gwu.edu%2Fsphhs_enviro_facpubs%2F237&utm_medium=PDF&utm_campaign=PDFCoverPages
http://dx.doi.org/10.1371/journal.ppat.1006369
mailto:hsrc@gwu.edu


PEARLS

Colonizing opportunistic pathogens (COPs):

The beasts in all of us

Lance B. Price1,2*, Bruce A. Hungate3,4, Benjamin J. Koch3,4, Gregg S. Davis1, Cindy

M. Liu1

1 Milken Institute School of Public Health, George Washington University, Washington DC, United States of

America, 2 Division of Pathogen Genomics, Translational Genomics Research Institute, Flagstaff, Arizona,

United States of America, 3 Center for Ecosystem Science and Society, Northern Arizona University,

Flagstaff, Arizona, United States of America, 4 Department of Biological Sciences, Northern Arizona

University, Flagstaff, Arizona, United States of America

* lprice@gwu.edu

Introduction

Colonizing opportunistic pathogens (COPs) are microbes that asymptomatically colonize the

human body and, when the conditions are right, can cause infections. Their ability to persist

indefinitely and to be transmitted without detection [1] gives COPs a unique epidemiology

that warrants special consideration. There are examples of COPs among bacteria, fungi (e.g.,

Candida albicans [2]), protozoa (e.g., Blastocystis [3, 4]), and viruses (e.g., Rhinovirus [5]), but

bacterial COPs are of particular relevance because of their major contribution to today’s anti-

biotic resistance crisis. The COPs include a long list of notorious bacteria that live double lives

as passive stowaways and virulent foes. Some of the best-known COPs include Staphylococcus
aureus, extraintestinal pathogenic Escherichia coli (ExPEC), Klebsiella pneumoniae, and Strep-
tococcus pneumoniae (Table 1). Their capacity for benign coexistence with humans belies their

alter egos that exact a heavy burden of human disease. For example, in the United States,

ExPEC bloodstream infections kill as many as 40,000 people annually [6], but, ExPEC are also

benign colonizers in the gastrointestinal tract [7]. Host factors, including age, sex, health sta-

tus, anatomy, and behavior, all play profound roles in infection susceptibility and severity [8–

10]. In particular, immunocompromised individuals are at excess risk for infections caused by

diverse bacteria, including COPs [11, 12] and even commensals. Yet, health status is not the

sole determinant of infection by COPs. For example, healthy women more frequently suffer

from urinary tract infections than men because of anatomical differences, including shorter

urethrae. Likewise, healthy children more commonly suffer from acute otitis media than adults

due to their shorter, flatter eustachian tubes [13].

Here, we focus on the ecological features that distinguish COPs from other bacterial patho-

gens. We explore the public health implications that arise from their unique biology and dis-

cuss the research needed to illuminate the dynamics of COPs among their human, animal, and

environmental reservoirs. And finally, we consider the commonalities among COPs that may

require active monitoring and management. Our examination complements and extends the

damage-response framework of pathogenesis proposed by Casadevall and Pirofski [14] with-

out focusing on the pathogenicity or virulence potential of COPs, exploring specifically the

host immune response, or delving into mechanisms of how COPs transition from colonization

to infection.
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COPs are a distinct subgroup of the opportunistic pathogens

The broad category of opportunistic pathogens can be divided into 2 distinct subgroups: the

COPs and the noncolonizing, simple opportunistic pathogens (SOPs; Fig 1). The defining fea-

ture of all opportunistic pathogens is their capacity to cause disease when they are introduced

into a susceptible body site or when hosts are immunologically compromised. The reservoirs

of opportunistic pathogens are diverse and include food, water, soil, animals, and people with

active infections. Whereas SOPs, such as Vibrio vulnificus, Mycobacterium marinum, and

Legionella pneumophila, are only present in environmental reservoirs, COPs can also take up

long-term residence in or on the human body as part of the “normal” human microbiome. For

example, S. aureus can colonize the human nose asymptomatically and transmit from person-

to-person without causing disease [15, 16]. Although COP colonization itself is asymptomatic,

it can be an important risk factor for subsequent disease [17]. For S. aureus, higher-abundance

colonization that is detectable by culture is further linked to higher risk of subsequent infection

than lower-abundance colonization that is frequently undetected by culture [18].

COPs differ from frank pathogens (Table 1), which can cause acute, chronic, or latent infec-

tions that can be symptomatic or asymptomatic [19]. While the latent and reactivation phases

of frank pathogens, such as Mycobacterium tuberculosis and Salmonella enterica serovar Typhi,

may mimic the colonization and infection phases of COPs, they are distinct in that these latent

infections are typically preceded by an acute infection and maintenance of the latent phase

requires an active adaptive immune response [20]. This is distinct from the fully asymptomatic

colonization by COPs (Fig 1). The detection of frank pathogens is often associated with a dis-

eased state, whether active or latent, and identifying cases of active or recent infections is usu-

ally enough to trace transmission routes. The well-characterized incubation periods of frank

pathogens are consistent features of their epidemiology and aid in tracking infections [21]. In

contrast, COPs lack predictable periods between colonization and infection, making their epi-

demiology cryptic. Because of this, COPs can cause insidious epidemics, where new clones

transmit widely—even globally—among healthy populations before being recognized. For

Table 1. Common bacterial colonizing opportunistic pathogens, simple opportunistic pathogens, and frank pathogens.

COPs Reservoir/Site of Colonization Associated Human Diseases

Staphylococcus aureus Nasal cavity, skin Cellulitis, abscesses, osteomyelitis,

endocarditis, sepsis

Streptococcus pneumoniae Nasopharynx Otitis media, pneumonia, sepsis

ExPEC Oral cavity, skin, intestinal tract Cystitis, pyelonephritis, meningitis, sepsis

Klebsiella pneumoniae Oral cavity, skin, intestinal tract Cystitis, pneumonia, sepsis

SOPs

Vibrio vulnificus Raw/undercooked seafood, warm costal water Wound infection, hemorrhagic bullae, sepsis

Mycobacterium marinum Contaminated water sources (e.g., untreated pools, fish aquaria) Granuloma, tenosynovitis, osteomyelitis

Legionella pneumophila Freshwaters, contaminated human water systems (e.g., showers,

faucets, cooling towers)

Legionnaires’ disease, Pontiac fever

Frank pathogens

Escherichia coli 0157:H7 Food animals, food products Bloody diarrhea, hemolytic uremic syndrome

Campylobacter jejuni Food animals, food products Watery diarrhea, Guillain-Barre syndrome

Salmonella enterica (including S.

typhi)

Food animals, food products Gastroenteritis, cystitis, typhoid fever, sepsis

Mycobacterium tuberculosis Lungs of infected patients Tuberculosis

COPs, colonizing opportunistic pathogens; ExPEC, extraintestinal pathogenic Escherichia coli; SOPs, simple opportunistic pathogens.

https://doi.org/10.1371/journal.ppat.1006369.t001
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example, by the time ExPEC strain ST131 was discovered in 2008, it had already made its way

to at least 3 continents [22].

COPs present a special challenge with respect to antibiotic

resistance

Today, some of the most important multidrug-resistant bacterial pathogens—methicillin-

resistant S. aureus (MRSA) and carbapenem-resistant Enterobacteriaceae—are COPs. Admin-

istration of an antibiotic exerts selective pressure on all bacterial populations within a host. As

a result, antibiotics can select for antibiotic-resistant COPs, in addition to commensals within

the host microbiome, regardless of whether or not the specific COP was the intended target of

Fig 1. Colonizing opportunistic pathogens (COPs) can persist asymptomatically and indefinitely within a host

and may spread silently within the community. These unique features of COPs result in epidemiological patterns

distinct from those of frank pathogens and simple opportunistic pathogens (SOPs)—patterns that may have substantial

public health consequences—such as the spread of antibiotic resistance. A deeper understanding of COP ecology is

needed to reveal the reservoirs and transmission pathways of COPs and to design surveillance programs capable of

detecting the otherwise invisible epidemics caused by COPs. (Illustration by Victor Leshyk.)

https://doi.org/10.1371/journal.ppat.1006369.g001
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the antibiotic treatment. For example, 30% to 50% of healthy adults are carriers of S. aureus
[17, 23, 24], and if a carrier takes a course of cephalosporins for an unrelated infection, the

antibiotic is applying collateral selective pressure on the carrier’s S. aureus population, confer-

ring advantage to resistant subpopulations, including MRSA. Resistant strains that surge

under such selective pressure may persist long after the target infection is cleared; this is con-

sistent with the finding that previous antibiotic use significantly increases the risk for future

antibiotic-resistant infections [25–29]. Vaccination can also exert selective pressure on target

species population, such as in the example of pneumococcal vaccine [30], in which the resul-

tant serotype replacement has shifted the resistance profile seen among invasive S. pneumoniae
infections [31].

Characterizing the ecology of COPs is paramount to understanding

their epidemiology

Characterizing the ecology of COPs will require a new research framework beyond studies of

virulence, antibiotic resistance, and epidemiology of individual species. Fully capturing the

ecology of COPs will require studying their distribution and dynamics which span 17 orders

of spatial magnitude—from the human microbiome (1x10-5 m) to global travel and commerce

(5x1011m). This will require investigating the intra- and inter-species relationships that deter-

mine the success and duration of COP colonization, and also the roles of reservoirs (e.g.,

humans, animals, soil, water, air, and others) in the maintenance and transmission of COPs.

Vegetable crops, meat products, water resources, and air can all potentially be contaminated

by antibiotic-resistant COPs from food animals and animal wastes [32, 33], in which airborne

exposure likely drives the link between proximity of residence to manure application and live-

stock operations to increased risk of community-acquired MRSA infections [34]. Such ambi-

tious ecological studies may require species- and even strain- or clonal-level focus, but the

collective lessons learned can inform how we monitor, forecast, and respond to COPs in

general.

The most urgent knowledge gaps related to COPs are the determinants of their colonization

after exposure, the duration of colonization, and the transition from colonization to infection.

Carefully designed observational studies could provide the samples necessary to close these

knowledge gaps, given that empirical studies on human subjects may face ethical challenges,

and that animal models—unless they are truly humanized in terms of immunity and resident

microbiome—are likely to offer limited insight. Designing informative monitoring and obser-

vational studies will require creative and careful planning, as these knowledge gaps are well

beyond the scope of typical studies conducted to date. One possible design encompassing the

broad scale of COP ecology would be to monitor individuals from regions with a low preva-

lence of specific multidrug-resistant COPs that travel to regions where they are endemic [35].

One could then assess the microbiome and other host and microbial determinants of coloniza-

tion and subsequent follow-up could provide insight into the transition from colonization to

infection and human-to-human transmissions.

COPs require new active and integrative surveillance programs

Enhanced surveillance of COPs can enable public health agencies to identify and control

emerging COP clones more quickly than is currently possible. Because of the insidious nature

of COP epidemics, active surveillance programs that monitor both COPs circulating among

asymptomatic carriers in the community and COPs causing clinical infections are crucial.

This work will require the development of new molecular methods and could be integrated

into existing surveillance programs, such as the National Healthcare and Safety Network,
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FoodNet, PulseNet, and the National Antimicrobial Resistance Monitoring System [36–39].

Active surveillance of COPs can involve sentinel communities, households, or individuals who

are recruited to provide samples from body sites where COPs reside, such as nasal swabs and

stool specimens for culture-based and molecular analyses. Current surveillance programs

could expand their monitoring to encompass COP clones in clinical infections and in environ-

mental reservoirs. Linking these data could allow an early warning system on emerging COP

clones and provide valuable information for tracing community- versus healthcare-associated

COP clones. Incorporating whole-genome DNA sequencing can further resolve subtleties

ranging from shifts in COP clonal populations to the loss and gain of resistance-encoding

mobile genetic elements [40–42].

Both frank pathogens and COPs can cause foodborne zoonotic infections. Infections caused

by frank pathogens, such as Salmonella enterica, Campylobacter jejuni, and E. coli 0157:H7

(Table 1), can quickly be recognized and controlled by tracing clusters of infections to a com-

mon source [43–45]. Foodborne COPs, such as K. pneumoniae and multidrug-resistant

ExPEC, are known to contaminate meat products and can cause infections in consumers [46];

however, because they may persist indefinitely in exposed hosts before causing an infection,

disease clusters can be dispersed in time and space, obscuring the source of the pathogen. In

addition to the prolonged colonization period, once a foodborne COP successfully colonizes a

person, it may also be transmitted person-to-person [47], spreading through the human popu-

lation to a far greater extent than frank foodborne pathogens. All of this contributes to the

challenge of estimating the disease burden of foodborne COPs.

A key target in active surveillance of COPs is the environmental reservoirs (e.g., air, food,

and water) and nonhuman “co-host” species such as wild animals, companion animals, and

livestock. The widespread use of antimicrobials in livestock [48] makes food animals an

important target in monitoring novel resistance elements in COPs and emerging antibiotic-

resistant COP clones—this is supported by the recent report of a mobile colistin-resistance ele-

ment, mcr-1, among livestock in China [49]. We will need to monitor COPs throughout the

livestock production system—from breeder farms to slaughter—to identify the origins and

potential control points for emerging COPs from livestock. Other livestock products, such as

wastes and meat, should be integrated into the active surveillance of COPs. Ideally, the active

surveillance of environmental reservoirs should be coordinated with the sentinel community-

based sites to maximize the integration across scales.

Concluding thoughts

“Sometimes, it tries to kid me that it’s just a teddy bear

or even somehow managed to vanish in the air

and that is when I must beware

of the beast in me.”

The Beast in Me by Nick Lowe

COPs are an important subgroup of the opportunistic pathogens that deserve special attention

and require novel intervention strategies to curb their heavy public health burden. Under-

standing both the ecology and the epidemiology of COPs is necessary to identify effective

interventions. Antimicrobial therapy is the current mainstay of treating COP infections, but

the emergence of broadly multidrug-resistant COPs challenges this modality. The post-antibi-

otic era requires new ways to prevent COP infections by disrupting colonization rather than
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trying to treat pan-resistant infections. While much research will have to be conducted on the

species or strain level, characterizing the full scope of COP ecology—from persistence in envi-

ronmental reservoirs to transmission among humans—is key for taming these beasts in all of

us.
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