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RESEARCH ARTICLE
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Abstract
Infection with the human liver flukeOpisthorchis viverrini induces cancer of the bile ducts,

cholangiocarcinoma (CCA). Injury from feeding activities of this parasite within the human

biliary tree causes extensive lesions, wounds that undergo protracted cycles of healing, and

re-injury over years of chronic infection. We show thatO. viverrini secreted proteins acceler-

ated wound resolution in human cholangiocytes, an outcome that was compromised follow-

ing silencing of expression of the fluke-derived gene encoding the granulin-like growth

factor,Ov-GRN-1. RecombinantOv-GRN-1 induced angiogenesis and accelerated mouse

wound healing.Ov-GRN-1 was internalized by human cholangiocytes and induced gene

and protein expression changes associated with wound healing and cancer pathways.

Given the notable but seemingly paradoxical properties of liver fluke granulin in promoting

not only wound healing but also a carcinogenic microenvironment,Ov-GRN-1 likely holds

marked potential as a therapeutic wound-healing agent and as a vaccine against an infec-

tion-induced cancer of major public health significance in the developing world.
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Author Summary

The oriental liver fluke Opisthorchis viverrini infects millions of people in SE-Asia and
kills 26,000 people each year due to parasite-induced liver cancer. The mechanisms by
which the parasite causes cancer are complex, but a role for excessive wound healing in
response to feeding parasites in the bile ducts has been proposed. We show that a growth
factor (granulin) secreted by the worm gets into bile duct cells and drives wound healing
and blood vessel growth. We delve into this “supercharged” wound healing process and
uncover a range of signaling molecules that initiate healing, but when dysregulated, can
result in a deadly liver cancer. On the upside, this liver fluke growth factor is now a candi-
date drug for the development of novel wound healing therapeutics to treat chronic
wounds, such as diabetic ulcers. Understanding this process is another step on the road to
developing a vaccine to reduce both parasite burdens and the incidence of the most preva-
lent and fatal cancer in Thailand and surrounding countries.

Introduction
Approximately 10 million people in Thailand and Laos are infected with the South East Asian
liver fluke Opisthorchis viverrini [1,2]. Infection with O. viverrini, a one-centimeter long flat-
worm that inhabits the bile ducts, is strongly associated with the induction of cholangiocarci-
noma (CCA), cancer of the bile ducts [3]. The World Health Organization’s International
Agency for Research on Cancer classifies infection with O. viverrini as a ‘group 1 carcinogen
[1,3,4,5]. In Thailand and neighboring countries, cyprinid fish that are intermediate hosts for
O. viverrini are eaten raw as a staple of the diet [1,2]. Infected individuals in endemic areas suf-
fer the world’s highest incidence of CCA, 65 times that experienced in non-endemic regions,
and accounting for up to 81% of liver cancers in this region [3,4]. CCA is a primary cancer
originating in cholangiocytes, the epithelial cells that line the biliary tree. It has long latency, is
invasive, metastasizes, is relatively non-responsive to anti-tumor agents and has a dismal
prognosis.

How opisthorchiasis induces cholangiocarcinogenesis is likely multi-factorial, involving
immunopathogenesis, increased consumption of dietary carcinogens, and the secretion of par-
asite proteins mitogenic for cholangiocytes [2]. We described a liver fluke-derived homologue
of the human growth factor granulin, termed Ov-GRN-1, from the excretory/secretory (ES)
products of O. viverrini [2,6,7]. Ov-GRN-1 binds to cholangiocytes in experimentally infected
hamsters and stimulates proliferation of fibroblasts and CCA cell lines. Here we sought to
determine whether Ov-GRN-1 possesses wound healing capacity and might therefore function
to repair the chronic damage it causes in the bile ducts during feeding activity and the ensuing
chronic inflammation. Moreover, given the physiologic and genetic similarities between chron-
ically healing wounds and cancer [8], we sought to address whether Ov-GRN-1 promotes cellu-
lar changes that are conducive to the establishment of a tumorigenic environment.

Results

Ov-GRN-1 is internalized by cholangiocytes
Using fluorescence microscopy we report that recombinant Ov-GRN-1 (rOv-GRN-1) labeled
with Alexa Fluor 488 (AF) was putatively internalized by ~75% of cells from an immortalized
human cholangiocyte cell line, H69 (Fig 1A and 1B, S1A–S1D Fig). Cholangiocytes co-cultured
with rOv-GRN-1-AF exhibited significantly higher (P< 0.001) per cell fluorescence intensity
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(6.4-fold, or 15.3-fold RFU/mole) than cholangiocytes co-cultured with a control recombinant
protein (thioredoxin-AF, rTRX-AF) that had been expressed and purified under identical con-
ditions (S1E Fig). Using 3D-structured illumination microscopy, rOv-GRN-1-AF was detected
between the apical and basal actin filaments of cells in monolayer, confirming internalization
in cholangiocytes of the liver fluke granulin (Fig 1C and 1D, S1 Movie). The precursor of
human granulin is expressed as a seven-domain granulin unit, known as progranulin (PGRN),
and initiates context-dependent autocrine and paracrine signaling cascades [9,10,11,12].
PGRN is internalized by cells and targeted to a specific organelle, commonly lysosomes, when
bound to co-factors such as sortilin or CpG nucleic acid motifs [9,10,11,13]. Attempts to iden-
tify the sub-cellular location of rOv-GRN-1 after internalization by cholangiocytes using a
range of organelle-specific markers suggested a cytosolic location, as specific co-localization to
organelles was not apparent (S2 Fig). The lack of involvement of an organelle suggested direct

Fig 1. Liver fluke granulin internalized by H69 cholangiocytes. (A)Widefield (deconvolved) micrographs showing the lateral (xy) overview of live H69
cholangiocytes imaged after 18 h incubation with Alexa Fluor 488-conjugated rOv-GRN-1 (green) and Hoescht nuclear stain (blue). (B)With further
magnification of fixed cells the labeled rOv-GRN-1 was evident among the cytoskeletal actin network (red) of numerous cells with DAPI (blue) stained nuclei.
(C) 3D-SIM lateral (xy) overview image of a well-separated individual cholangiocyte stained as in panel B. (D) Rendered axial (yz) view of boxed inset in (C)
showing rOv-GRN-1 (green) present between the apical and basal actin filaments (red) of the cholangiocyte (DAPI channel omitted). Additional material
shown in S1 Fig and S1 Movie.

doi:10.1371/journal.ppat.1005209.g001
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cell entry followed by interactions with signaling cascades, rather than the more conventional
growth factor receptor-based signal initiation. While unusual, direct cell entry and interaction
with signaling molecules is known for small growth factors with alkaline tails, such as basic
FGF [14,15]; the C-terminus of Ov-GRN-1 is highly basic [7] with a predicted pI of 12, charac-
teristics that also support this mode of cell entry.

Silencing ofOv-grn-1 expression impairs parasite-driven wound healing
Previously, we silenced expression of the Ov-grn-1 gene using RNA interference (RNAi) that
reduced cell proliferation of cholangiocytes co-cultured with the liver flukes [16]. To address
the role of Ov-GRN-1 in wound repair we silenced expression of Ov-grn-1 using RNAi and
assessed the ability of ES products from dsRNA-treated flukes to accelerate cell proliferation
and wound repair. Levels of mRNA encoding Ov-GRN-1 were depleted by 97% in worms
transduced with dsRNA specific for Ov-grn-1 but not affected by control dsRNA specific for
luciferease (luc) (S3 Fig). ES products were collected from culture supernatants of dsRNA-
treated flukes and effects of the ES on proliferation of cholangiocytes assessed. ES products col-
lected on days 1, 5 and 7 from Ov-grn-1dsRNA-treated flukes reduced cell proliferation by
~48% (P< 0.01; F(DFn, DFd) = 24.27 (3,7)) compared to ES from luc-treated flukes (Fig 2A and
S3 Fig). To ensure that Ov-grn-1-dsRNA treatment did not have a major impact on the ES
composition of the flukes, we compared ES profiles from Ov-grn-1- and luc-dsRNA treated
flukes by SDS-PAGE, and did not detect obvious differences in protein yield or composition
(S4 Fig).

At the outset, we assessed the role of Ov-GRN-1 in wound repair using in vitro scratch
assays given that the procedure is a facile surrogate of cell migration and wound closure [17].
dsRNA-treated flukes were co-cultured in Transwell plates such that they were separated from
the underlying cells by a porous membrane, but ES products could traverse the inner mem-
brane of the chamber. Firstly, we showed that ES products from luc dsRNA-treated flukes sub-
stantially accelerated wound healing compared to both cholangiocytes and CCA cell lines that
were not co-cultured with flukes (Fig 2C and 2D). Secondly, and pivotal to this study, signifi-
cantly less wound healing/closure was induced by Ov-grn-1 dsRNA-treated flukes in both cho-
langiocytes over 36 hours (P< 0.01–0.0001; Fig 2B and 2C) and CCA cells over 18 hours
(P< 0.001–0.0001; Fig 2C) than with control luc dsRNA-treated flukes. Fewer cells crossed the
margin of the wound of the scratched monolayers cultured with ES products from Ov-grn-1
dsRNA-treated flukes at the early time points (6–12 h, Fig 2B–2D), suggesting the involvement
of cell migration in scratch closure rather than closure due simply to cell proliferation [17].

To confirm the role of Ov-GRN-1 in in vitro wound healing 20 nM rOv-GRN-1 was shown
to be sufficient to significantly accelerate healing of a cholangiocyte monolayer compared to
cells exposed to control protein (rTRX) (F(DFn, DFd) = 16.32(2,33); P< 0.01) (Fig 2E).

rOv-GRN-1 accelerates wound healing in mice
To determine whether rOv-GRN-1 could accelerate wound repair in vivo, sub-cutaneous deep
lesions were surgically inflicted between the ears on laboratory mice, treatment applied and the
injury covered with spray plaster, after which the rate of wound healing was quantified at inter-
vals of 24 hours for four days [18] (Fig 3A). This method is considered to be superior to the
conventional abdomen wound protocol when investigating growth factors, since it quantifies
healing primarily from epithelial re-growth rather than skin contraction [18,19]. Daily applica-
tion of 56 pMoles of rOv-GRN-1 significantly accelerated wound healing within 2–4 days com-
pared wound closure in response to application of a control protein (rTRX) (F(DFn, DFd) = 32.08

(2,16); P< 0.01–0.001) or PBS (Fig 3B).

Parasite Growth Factor AcceleratesWound Healing
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Liver fluke granulin is angiogenic
Angiogenesis is an integral aspect of wound healing, is essential for the vascularization of new
tissue, and is a cardinal hallmark of carcinogenesis. The chorioallantoic membrane (CAM)
assay is a commonly accepted in vivomodel of vertebrate angiogenesis [7,20,21]; moreover, the
ancestral lineage of the granulin family of growth factors [22] made us conclude that the CAM
assay was a suitable mean by which to assess angiogenic properties of Ov-GRN-1. Quail eggs
were implanted with rOv-GRN-1- or PBS-soaked membranes. Membranes with two picomoles
(P< 0.05) or 20 picomoles (P< 0.0001) of rOv-GRN-1 induced angiogenesis (F(DFn, DFd) =
108.4(2,9)) (Fig 3C) in the embryo developing within the egg.

Fig 2. Ov-GRN-1 stimulated wound repair in vitro. (A) Cholangiocytes exposed to ES products from flukes whereOv-grn-1 had been silenced by RNA
interference displayed significantly reduced proliferation over 36 h of co-culture. ES products (10 μg/ml) were derived from flukes that were exposed to
dsRNAs for 5 days. Cell proliferation was monitored in real time using xCELLigence; every tenth data point is shown to aid visualization. Statistical
comparisons were betweenOv-grn-1- and luc-dsRNA-treated parasites. (B) Images of the scratch assay involving H69 cholangiocyte monolayers co-
cultured in Transwell plates withOv-grn-1 or luc-dsRNA-treated. Dotted lines denote wound edges over time. (C) Selected time points were measured from
the photographs in (B); statistical comparisons were between cells cultured withOv-grn-1-and luc-dsRNAs. (D)Wound healing scratch assay as shown in
panel c but using the CCA cell line M214 (D). (E)Wound healing scratch assay as shown in panels (C) and (D) but recombinant protein applied to cells
instead of co-culturing cells with live flukes. Statistical comparisons were between 20 nM rTRX and rOv-GRN-1 treatments or rTRX and PBS treatments. For
all panels, data points represent the averages of two or three biological replicates with 3–5 biological replicates displayed with SEM error bars (some bars
masked by data points). *P<0.05, **P<0.01, ***P<0.001, ****P<0.0001, ns = not significant. Additional data shown in S2 Fig.

doi:10.1371/journal.ppat.1005209.g002
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Fig 3. Ov-GRN-1 stimulated wound repair in vivo. (A) Sequential images over four days of healing wounds revealed the response of mice to treatment with
recombinant rOv-GRN-1 or rTRX control; skin-deep wounds made with a 5 mm diameter biopsy punch between the ears of Balb/c mice. Minor modifications
(brightness, contrast, cropping) were made to aid viewing. (B) The rate of wound healing over four days was measured; wound closure was determined
electronically from photographs by measuring wound areas with ImageJ software. To aid viewing, curves have been shifted left or right marginally to
minimize error bar overlap. (C) Assessment of the angiogenic properties of recombinant Ov-GRN-1 in the chorioallantoic membrane (CAM) assay. The
numbers of blood vessels in quail eggs that grew on 0.5 cm2 filter paper soaked in rOv-GRN-1 or vehicle (control) were ascertained after incubation for 15
hours. Data points are the averages of two experiments with 3–5 biological replicates displayed with SEM bars. * = P<0.05, ** = P<0.01, *** = P<0.001,
**** = P<0.0001, ns = not significant.

doi:10.1371/journal.ppat.1005209.g003
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rOv-GRN-1 induces changes in cholangiocyte protein and gene
expression associated with wound healing and cancer
We employed isobaric tags for relative and absolute quantitation (iTRAQ) of changes in
expression of cholangiocyte proteins induced by rOv-GRN-1. Using the Scaffold program, we
reliably validated 215 proteins in cholangiocytes identified by Mascot compared to cells at
baseline and at subsequent intervals (S1 Table). rOv-GRN-1 induced >50% change in detect-
able expression levels (P< 0.05) of 70 cholangiocyte proteins at�1 time point compared to
control cells (Fig 4A and S2 Table). During co-culture of up to eight hours there was substantial
up-regulation of protein expression, after which moderation or down regulation of the proteins
ensued beyond 16 hours from the start of the analysis (Fig 4A). Three KEGG pathways with 12
significantly regulated proteins each—the spliceosome, endoplasmic reticulum protein pro-
cessing and metabolic pathways (Fig 4B) were revealed by protein ontology analysis in the cho-
langiocytes cultured with the parasite granulin. Euclidean distance clustering revealed the
internal patterning of temporal translational changes (Fig 4A), where group X proteins under-
went a short-term up-regulation (0.5–8 h) followed by a lessening of expression. Group Y pro-
teins also underwent a short-term up-regulation followed by a substantial down-regulation.
Group Z proteins were distinct due to their high and rapid short-term up-regulation. Notably,
six of the 13 group Z proteins are associated with the spliceosome (Fig 4A and 4B). The dysre-
gulated proteins were subjected to a network analysis (Fig 4C). When the top-25 most highly
up-regulated proteins were considered, proteins involved in the spliceosome pathway were
most highly represented (Fig 4D), and included the top three (HNRNPA3, THOC4 and
NONO) and nine of the top 25 most highly up-regulated proteins.

Mass spectrometry is constrained in its ability to characterize changes in low abundance
proteins such as growth factors and cytokines. We therefore assessed the changes in cholangio-
cyte gene expression after one and 24 hours of co-culture with rOv-GRN-1 using gene arrays
targeting epithelial to mesenchymal transition (EMT), oncogenesis, wound healing and Toll-
like receptor signaling (S3 Table). Thirty genes underwent an Ov-GRN-1-induced change
(P< 0.05) in regulation (Fig 4E and S4 Table), including four which exhibited>50% change in
expression levels. Three of the four upregulated genes encoded proteins from the C-X-C ligand
chemokine family of cytokines: cxcl1, cxcl2 and cxcl8 (also known asinterleukin-8); the fourth
gene encoded for serine/threonine kinase 11 (stk11), also known as liver kinase B1. Another
member of the cxcl family, cxcl5, was significantly upregulated, but fell below the 50% cutoff
(43%).

Discussion
We report for the first time the secretion of a growth factor from a metazoan pathogen that
promotes wound healing of mammalian host tissue in vivo. The implications of the findings
are multi-fold and significant. Firstly, the instrumental role described here for Ov-GRN-1 in
orchestrating wound repair implies that this protein represents an attractive target for the
development of a vaccine that thwarts regulation of the microenvironment within the biliary
tract parasitized by the liver fluke. Indeed we previously showed that antibodies to rOv-GRN-1
block proliferation of cholangiocytes [7], which further bolsters the proposition of a vaccine
with both anti-infection and anti-cancer properties. One potential caveat of a vaccine that
blocks wound repair however is the consequences of an aggressive inflammatory response in
the absence of wound resolution, including uncontrolled sepsis or other complications, so
appropriate consideration is warranted. Second, the findings highlight the potential therapeutic
application of Ov-GRN-1 as a novel biologic for treating both acute and chronic wounds, such
as recalcitrant ulcers on the extremities of diabetic patients [23].

Parasite Growth Factor AcceleratesWound Healing
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Mammalian granulins play diverse roles continuously during development from the embryo
into adult life, including key roles in tissue remodeling and inflammation [22]. Mutations in
the human granulin gene result in a spectrum of conditions, including neurodegenerative dis-
orders [24] and malignant growth and metastasis [25]. Indeed, granulin has a central role in

Fig 4. Ov-GRN-1 stimulated responses in cholangiocytes. (A) Clustered heatmap of 70 proteins for which expression levels were modulated between
0.5–48 h post-rOv-GRN-1 treatments. Only proteins that underwent significant changes in expression levels (> ±1.5-fold change relative to time point zero)
are shown. The Euclidean distance clustering grouped proteins by translational temporal patterns and the XYZ designations distinguish the three major
regulation patterns. Asterisks denote spliceosome-associated proteins. (B)Major KEGG pathways of cholangiocyte proteins whose expression levels were
modulated by rOv-GRN-1. (C) Interactome of proteins whose expression levels were modulated by rOv-GRN-1. The top 25 proteins in terms of expression
level changes were numbered with the average fold-upregulation; spliceosome-associated proteins shown surrounded by black circles. The A-E
designations signify the major gene ontology groupings (defined in the legend) and the thickness of the lines linking different proteins represents the strength
of the interactions. (D)Magnification of the boxed spliceosome grouping “E” from panel C. (E) Volcano plot of the cholangiocyte gene response to co-culture
with rOv-GRN-1. Gene expression was measured using gene arrays designed to assess wound healing, oncogenesis, EMT and TLR associated transcripts
detected using qPCR. (F) Heatmap depicting the changes of the significantly regulated (P < 0.05) genes shown in (E). Genes modulated with a > ±1.5-fold
change denoted using bold type. Asterisks denote genes whose expression level significantly changed within one hour of co-culture with rOv-GRN-1. Genes
where expression levels underwent significant changes within 24 hours (but not by one hour) of co-culture are indicated by the absence of asterisks. The
color keys for panels (A) and (F) represent fold-change proportional to color intensity. Complete data sets of proteome and transcriptome changes provided
in S1–S4 Tables.

doi:10.1371/journal.ppat.1005209.g004
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carcinogenesis of a range of malignancies [22]; pertinent to our findings, granulin is over-
expressed in hepatocellular carcinoma (HCC) [26] and renders HCC cells resistant to Natural
Killer cell-mediated cytotoxicity by modulating expression of MHC-associated genes [27]. By
contrast, granulins of pathogens have received little attention. We detected O. viverrini granu-
lin (Ov-GRN-1) in the ES products of adult flukes and provided the first evidence of a parasite
growth factor that drove proliferation of host cells [6,7]. The recent report of the O. viverrini
genome revealed additional members of the granulin family–a single granulin domain protein
(Ov-GRN-2) and a pro-granulin (PGRN) containing eight granulin subunits [28]. Products of
either of these genes were not evident within the ES proteome [6] and their role in the host-par-
asite relationship is unclear.

The mechanisms by which vertebrate or liver fluke granulins drive cell proliferation and
wound repair are poorly understood. Vertebrate PGRN contains seven individual granulin
subunits that are post-translationally processed. Mouse PGRN but not the individual subunits
of granulin binds to TNF receptors (TNFR), and antagonizes TNF signaling [29]. Dissimilar to
PGRN, Ov-GRN-1 consists of a signal peptide and a single granulin motif [7]. Although the
ability of rOv-GRN-1 to bind to TNFR has not been investigated, probing a microarray of the
human proteome microarray [30] with labeled rOv-GRN-1 failed to reveal binding to any iso-
forms of TNFR, or indeed to any other obvious cell surface receptors, on the array.

Cholangiocyte proteins involved in the spliceosome pathway were significantly regulated
after exposure to rOv-GRN-1 in vitro. The majority of intron removal from pre-RNA mole-
cules is catalysed by the spliceosome, a large ribonucleo-protein complex that consists of five
small nuclear ribonucleo-protein particles (snRNP, U1-6) and>150 other proteins [31]. One
critical component of the wound healing process that is heavily regulated by RNA binding and
splicing is the epithelial to mesenchymal transition (EMT), which increases the migratory and
invasive properties of cells and thereby promotes wound closure [32,33,34]. However, canceri-
zation also is an untoward consequence of EMT, and aggressive tumours often display dysregu-
lated expression of spliceosome proteins [31,35].

Liver fluke granulin stimulated expression of genes encoding the chemokines CXCL1, 2, 5
and 8 (also known as IL-8). These chemokines signal through the receptor CXCR2 [36,37] by
internal transactivation of the epidermal growth receptor (EGFR) and EGFR signaling through
the mitogen activated protein kinase (MAPK) pathways [38]. Chemokines play central roles in
wound repair, angiogenesis and recruitment of immune cells [36,39,40]. Inhibitors of MAPK
signaling block rOv-GRN-1-induced cell proliferation [7], and the increased expression of cxcl
genes induced in cholangiocytes by rOv-GRN-1 may underlie this observation. In addition,
expression levels of transcripts encoding several kinases including stk11 and irak1 were
markedly stimulated by the parasite granulin. Both STK11 (liver kinase B1) and IRAK1 (Inter-
leukin-1 receptor associated kinase 1) control signaling in inflammatory pathways and regulate
chemotaxis in diverse processes including wound healing [41,42]. Moreover, somatic muta-
tions in stk11 [43] and irak1 [44] associated with malignancy. Upregulation of these kinases
during proliferation of cholangiocytes within the liver fluke-parasitized biliary tree may, there-
fore, increase the likelihood of these mutations.

Topical application of picomoles of rOv-GRN-1 significantly accelerated repair of wounds
in the skin of mice. Although liver fluke granulin triggers changes in the cellular proteome that
establish a pre-tumorigenic environment, short-term therapy would reduce the likelihood of
inducing cancer in patients. Whereas advances in understanding the impaired angiogenesis in
non-healing wounds have been reported, few effective agents that promote or expedite wound
healing and closure are yet available [45]. The ability of rOv-GRN-1 to accelerate wound heal-
ing in mice and promote angiogenesis in vivo revealed that this growth factor holds noteworthy
promise for a new category of medicines for non-healing wounds and related indications.
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Other growth factors are of interest for their therapeutic properties, notably human PGRN
due to its ability to bind to TNFR. Indeed, recombinant human PGRN inhibits TNF-activated
signaling and protected against inflammation in rodent models of arthritis [29]. PGRN further
exerts its anti-inflammatory influence by inducing naïve T cells to transform into FOXP3-ex-
pressing regulatory T cells (Tregs) [46], a lymphocyte type that is underrepresented in inflam-
matory diseases but the presence of which is a hallmark of helminth infections [47,48]. Indeed
we speculate now that Ov-GRN-1 may be the major inducer of Tregs during opisthorchiasis,
but this hypothesis clearly warrants testing.

In conclusion, we have shown using gene silencing and recombinant protein technologies
that the most carcinogenic of parasitic helminths, the liver fluke O. viverrini, secretes a growth
factor which in isolation is sufficient to repair wounds both in monolayers of cultured human
cholangiocytes and in the skin of mice. While our mouse cutaneous wound healing studies are
informative and shed light on the potential therapeutic application of Ov-GRN-1 for chronic
wounds, they do not directly address the role of the protein in host-fluke interactions in the bil-
iary tree. With recent advances in genome editing using CRISPR-Cas9, we will soon be well
placed to knock out the Ov-grn-1 gene, facilitating in vivo studies that will specifically address
the role of the protein in healing parasite-induced wounds in the bile ducts. Ov-GRN-1 there-
fore is a worthy candidate at which to target novel interventions—drugs and/or vaccines with
both anti-helminth and anti-cancer activity. Moreover, Ov-GRN-1 offers potential as a novel
biologic for treating acute and chronic wounds where normal tissue repair mechanisms are
insufficient. Now more than ever, there is acute need for new therapeutics to combat the epi-
demic of inflammatory diseases, particularly diabetes and associated chronic ulceration. The
therapeutic efficacy of parasitic helminths and their secreted products in treating inflammatory
diseases is clear-cut [49]. The present findings indicate that parasite growth factors, which by
their very nature have evolved to repair damaged tissues within their hosts, offer great promise
as a novel therapeutic modality informed by millennia of host-parasite coevolution.

Materials and Methods

Ethics statements
Hamsters. Hamsters for O. viverrini lifecycle continuation were purchased from the ani-

mal facility, Faculty of Medicine, Khon Kaen University. Study design protocols and standard
operating procedures adhered to and were approved by the Animal Ethics Committee of Khon
Kaen University according to the Ethics of Animal Experimentation of the National Research
Council of Thailand, approval number AEKKU43/2555.

Fish. Freshwater fish required for maintenance of the O. viverrini life cycle were purchased
from a local market in the Muang District, Khon Kaen province, Thailand.

Mice. Mouse wounding studies were conducted in accordance with and approved by the
James Cook University Small Animal Ethics Committee, approval number A1806.

Quail eggs. Eggs (age of embryonation< 7 days) were obtained from Quail Kingdom
farm, Jimboomba, Queensland. Ethics applications were not required as the eggs were only
used at the early stage with the minimum time required to complete laboratory procedures.

Parasite culture
Excretory/secretory (ES) and somatic proteins were harvested from adult O. viverrini grown in
laboratory hamsters as described [7,50]. Briefly, O. viverrinimetacercariae harvested from nat-
urally infected cyprinoid fish were used to infect hamsters (Mesocricetus auratus) by stomach
intubation. Hamsters were euthanized three months after infection, when adult O. viverrini
flukes were removed from the biliary tract. The flukes were washed and cultured in modified
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RPMI-1640 (Life Technologies) containing penicillin and streptomycin at 37°C/5% CO2 for
three days. Culture supernatant was retained as ES products of the parasites, and stored at
-80°C [50].

Auto-induction of recombinant protein expression in E. coli
Ov-grn-1 pET41a or thioredoxin (trx) cDNAs contained within the pET32a (Novagen) plas-
mid were transfected into BL21 Escherichia coli cells (Life Technologies) and used to create
recombinant protein with auto-induction as previously described [7,51]. Briefly, ZYM-5052
culture media was supplemented with 100 μM Fe(III)Cl3 and 100 μg L

-1 kanamycin to produce
recombinant protein (rOv-GRN-1) or 50 μg L-1 ampicillin to produce rTRX [51]. Two hundred
ml of inoculated media in a 1L baffled Erlenmeyer flask was incubated overnight at 37°C with
300 rpm rotation to induce expression with auto-induction.

Recombinant granulin
Purification of rOv-GRN-1 was achieved using an AKTA10 purification system at 4°C (GE
Healthcare) [52]. The BL21 E. coli pellet was lysed with 3 freeze/thaw cycles followed by sonica-
tion (Q4000 sonicator, Qsonix) on ice. Twenty g of the resulting pellet was solubilized in 400
ml urea-containing nickel binding buffer (8 M urea/300 mMNaCl/50 mM imidazole/50 mM
sodium phosphate pH 8 [Sigma]) at 4°C for 24 h with slow agitation. After filtration through
0.22 μMmembranes, supernatants were incubated in nickel chelate resin on 2× 5 ml Histrap
IMAC columns (GE Healthcare). The columns were washed in increasing concentration of
imidazole (two column volumes [CV] at 50 mM/5 CV at 100 mM) after which bound material
was eluted in 500 mM imidazole in binding buffer. The control rTRX protein was expressed
and affinity purified similarly, but under native conditions (without chaotropes), as described
[52].

Protein refolding and purification
Refolding of urea-denatured rOv-GRN-1 was performed with 28 mL of G10 Sephadex (GE)
resin on a XK16/20 column (GE) [52]. A 120 ml Superdex 30 XK16/60 column (GE) was used
to fractionate three ml of refolded rOv-GRN-1 into 150 mMNaCl, 50 mM sodium phosphate,
pH 6, at a flow rate of 1 ml min-1. Fractions containing rOv-GRN-1 monomer eluting at a size
equivalent of ~1 kDa were pooled. Protein concentration was established using a combination
of the Bradford assay (Bio-Rad) and absorbance at 280 nm.

Mammalian cell culture
The cholangiocyte cell line H69 is a SV40-transformed bile duct epithelial cell line derived
from a non-cancerous human liver [53] and was obtained in 2010 from Dr. Gregory J. Gores,
Mayo Clinic, Rochester, Minnesota. H69 cells and cells of the human cholangiocarcinoma
(CCA) cell line KKU-M214 were maintained in T75 cm2 vented flasks (Corning) as monolay-
ers as described [52,53,54,55] with minor modifications. KKU-M214 cells were maintained
with regular splits using 0.25% trypsin (Life Technologies) every 2–5 days in complete media
(RPMI with 10% fetal calf serum [FCS] and 1× antibiotic/antimycotic) at 37°C under 5% CO2.
Cell proliferation assays were performed with low nutrient media containing 0.5% FCS. H69
cells were maintained under similar conditions with growth factor supplemented media [54]
(DMEM/F12 with high glucose, 10% FCS, 1×antibiotic/antimycotic, 25 μg ml-1 adenine, 5 μg
ml-1 insulin, 1 μg ml-1 epinephrine, 8.3 μg ml-1 holo-transferrin, 0.62 μg ml-1 hydrocortisone,
13.6 ng ml-1 T3 and 10 ng ml-1 EGF–Life Technologies). Low nutrient media for H69 cells was
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5% complete media, i.e. 0.5% FCS and 5% of the growth factor concentrations for complete
media. The identities as human-derived of both cell lines were confirmed with single tandem
repeat (STR) analysis (15/15 positive loci across two alleles) and mycoplasma free at the DNA
diagnostics centre (U.S.A.), accredited/certified by CAP, ISO/IEC 17025:2005 through
ACLASS.

Cell proliferation monitoring in real time
Cells were seeded at 1500 cells per well in 200 μl of complete media as described above in E-
plates (ACEA Biosciences) and grown overnight while monitored with an xCELLigence SP sys-
tem (ACEA Biosciences) which monitors cellular events in real time by measuring electrical
impedance across interdigitated gold micro-electrodes integrated on the bottom of tissue cul-
ture plates [56]. Cells were washed three times with PBS and replaced with 180 μl of low nutri-
ent media as described above and incubated for a minimum of 6 h before further treatments.
Treatments were prepared at 10× concentrations and added to each well in a total volume of
20 μl. The xCELLigence system recorded cell index readings hourly for 5–6 days after treat-
ment. Cell index readings were normalized before treatment and cell proliferation ratios were
determined from biological triplicates and represent the relative numbers of cells compared to
control cells.

Cell scratch assay
H69 cells in complete media (see above) that were grown to confluence in 6 well plates (Falcon)
were wounded by scratching the cell monolayer with a disposable 200 μl pipette tip, as
described [17]. The wound in the monolayer was photographed regularly and closure was
assessed using ImageJ software (National Institute of Health, U.S.A.). Wound widths over time
were plotted and compared to controls with matched 2-way ANOVA and Dunnett’s correction
for multiple comparisons. For cell scratch assays performed in co-culture with liver flukes,
wounded monolayers of cells in 6 well plates were co-cultured with 10 adult liver flukes that
had been subjected to RNA interference to silence expression of Ov-grn-1 (below) in the upper
chamber of Transwell (4 μm pore size) inserts (Corning, USA).

Fluorescence microscopy
Recombinant rOv-GRN-1 and rTRX (control) proteins were amine labeled with Alexa Fluor
488 (AF488—Life Technologies) [57]. H69 cholangiocytes were grown to 50% confluence on
optical quality glass bottomed culture dishes containing a 0.17 mm thick cover glass (World
Precision Instruments). AF488-labeled proteins were added to cells at a final concentration of
3 μM and incubated for 18 h at 37°C under 5% CO2. Cells were fixed in 4% paraformaldehyde/
PBS for 20 min at room temperature. Cells were permeabilized in 0.1% Triton X-100/PBS and
stained with 10 μMDAPI and 165 nm Alexa Fluor 568 Phalloidin (Life Technologies). Speci-
mens were mounted in 5% N-propyl-Gallate (Sigma) in 80% glycerol/PBS. For localization
studies, cells were fixed in 4% paraformaldehyde in PBS for 20 min at room temperature and
then permeabilized in 0.1% Triton X-100/PBS. Fixed and permeabilized cells were probed with
either LAMP1 (lysosomes), Rab5, EEA1 (early endosome), Rab7 (late endosomes), GRP78 BiP
(endoplasmic reticulum) or anti-golgin97 (Golgi) antibodies at a 1:200 dilution, followed by
incubation with Alexa Fluor 568 goat anti-mouse or Alexa Fluor 568 goat anti-rabbit antibod-
ies at a 1:1000 dilution. Conventional fluorescence imaging was performed with a 60× (NA1.4)
objective using an A1 confocal research microscope (Nikon) or a DeltaVision personal research
microscope (Applied Precision, GE Healthcare). Super Resolution imaging was performed
using a DeltaVision OMX 3D-Structured Illumination Imaging system (Applied Precision, GE
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Healthcare) as previously described [58] and images were processed as described elsewhere
[59].

Chorioallantoic membrane assay
The chorioallantoic membrane assay (CAM) assay was established based on previous studies
using quail eggs [21,60]. Briefly, fertilized eggs of the quail Cortunix cortunix were incubated at
37°C in a humidified incubator for five days. The surface of the eggshell was sanitized by wip-
ing with 70% ethanol. Subsequently, a 0.5-cm square window of shell was surgically resected.
The CAM with visible blood vessels was gently pulled down after which the window was sealed
with clear tape. Eggs were incubated at 37°C for 18 h. Subsequently, filter paper presoaked in
20 μl of 2 or 20 pMoles of rOv-GRN-1 was implanted. The surgical window was resealed, and
the eggs incubated at 37°C for 18 h. Eggs were chilled and the surgical window was fixed with
25% glutaraldehyde. Implanted filter papers were trimmed and washed with PBS prior to
counting the blood vessels using an Olympus SZX12 dissecting microscope with a light
box using 32× magnification.

Mouse wounding assay
A head biopsy model was employed, as recommended for assessment of growth factors in
wound healing [18,19]. Briefly, five female BALB/c mice per group (rTRX, PBS and rOv-GRN-
1) were anesthetized (intraperitoneal xylazine 16 mg kg-1; ketamine 80 mg kg-1), after which
the crown of the head was shaved with an electric razor. Mice were anesthetized three days
later and the surgical site was sterilized with 70% ethanol wipes. A skin-deep wound of 5 mm
in diameter was inflicted on the crown of the head using biopsy punch (Zivic instruments).
The lesion was rinsed with antiseptic (Betadine, Sanofi), after which 56 pMoles of rOv-GRN-1,
rTRX or PBS suspended in 1.5% methyl cellulose (Sigma) in 50 μl was applied. Thereafter, the
lesion was covered with Elastoplast Spray Plaster (Beiersdorf). Progress of the wound, and
wound closure, was documented with photographs taken at cumulative 1.6× magnification
using a dissection microscope (Olympus) fitted with a Nikon D200 camera, each day for five
days. Wound closure was ascertained in an unblinded fashion by comparison of the surface
area of the lesion with the size as documented immediately after the wound was inflicted, with
the assistance of ImageJ software.

Relative/absolute quantitation labeling of cellular proteins using isobaric
tags
H69 cholangiocytes were cultured in complete medium until ~50% confluence was reached in
T75cm2 flasks. Cells were washed three times in PBS, 13.5 ml of low nutrient medium was
added and cells were grown overnight at 37°C in 5% CO2. rOv-GRN-1 or rTRX (500 nM) were
prepared in pre-warmed low nutrient media and 1.5 ml was added to each flask for a final con-
centration of 50 nM recombinant protein in media. Cells were grown for 0.5, 1, 4, 8, 16, 24 and
48 h, washed 3× in PBS and snap frozen then stored at -80°C. Cells were lysed in three ml of
0.2% SDS with 3× freeze/thaw cycles and centrifuged at 4000 g to remove cell debris. The pro-
tein in the supernatant was precipitated with methanol [61]. Precipitated protein was prepared
as per manufacturer’s instructions from the 8-plex iTRAQ [62] kit (AB SCIEX) as previously
described [63]. Briefly, 100 μg of protein samples for each time-point were digested with 2 μg
of trypsin (Sigma-Aldrich) at 37°C for 16 h. Each sample was labeled with different iTRAQ
labels and was subsequently combined into one tube for OFFGEL fractionation and LC-MS/
MS analysis.
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Peptide OFFGEL fractionation, mass spectrometry and protein
identification
A 3100 OFFGEL Fractionator (Agilent Technologies) with a 24 well setup was used for peptide
separation based on isoelectric point (pI), as described [64]. Sample clean up and desalting
were performed using a HiTrap SP HP column (GE Healthcare) and a Sep-Pak C18 cartridge
(Waters). Samples were separated with the OFFGEL Fractionator and collected fractions were
desalted using ZipTip (Millipore) followed by evaporation by centrifugation under vacuum.
The sample was reconstituted, desalted and separated with an analytical nano-HPLC column
(150 mm x 75 μm 300SBC18, 3.5 μm, Agilent Technologies) before being applied to a Triple
TOF 5600 mass spectrometer (Applied Biosystems); the results were analyzed as described
[64].

Bioinformatic analysis of proteomic sequence data
Database searches were performed on the SwissProt database (version September 2013) using
MASCOT search engine v4.0 (Matrix- Science) with parameters as previously described [64].
Findings fromMascot searches were validated using the program Scaffold v.4.2.1 (Proteome
Software Inc.) [65]. Peptides and proteins were identified using the Peptide Prophet algorithm
[66], using a probability cut-off of 95% (peptides) or 99% probability (proteins), and contained
at least two identified peptides (proteins) [67]. Proteins containing similar peptides that could
not be differentiated based on tandem mass spectrometry (MS/MS) analysis were grouped to
satisfy the principles of parsimony. A false discovery rate (FDR) of<0.1% was calculated using
protein identifications validated using Scaffold v.4.2.1. Furthermore, a FDR of<0.4% for the
proteins identified was calculated using protein identifications validated by Scaffold. Proteins
sharing significant peptide evidence were grouped into clusters. Channels were corrected in all
samples according to the algorithm described in i-Tracker [68]. Acquired intensities in the
experiment were globally normalized across all acquisition runs. Individual quantitative sam-
ples were normalized within each acquisition run, and intensities for each peptide identifica-
tion normalized within the assigned protein. The reference channels were normalized to
produce a 1:1 fold change. Normalization calculations were performed using medians to multi-
plicatively normalize data. A protein-protein interaction analysis was performed using the
String software (http://string-db.org/) based on compiled available experimental evidence [69].

RNA interference
Adult flukes from hamsters were transformed with Ov-grn-1 targeted dsRNA (residues 49–333
of the 444 nucleotide transcript [7]) by square wave electroporation [70]. Briefly, 20 flukes in
100 μl of RPMI 1640 medium were dispensed into a 4 mm gap electroporation cuvette contain-
ing 5 μg dsRNA followed by a square wave pulse of 125 volts of 20 milliseconds duration.
Transformed parasites were cultured for 1, 2, 3, 5 and 7 days after treatment. Total RNA was
isolated from parasites and Ov-grn-1 expression measures using qRT-PCR with SYBR Green
(TAKARA Perfect Real-time kit, Japan) and O. viverrini actin (GenBank EL620294.1) as a ref-
erence transcript [70]. The mRNA levels of Ov-grn-1 were normalized to actin mRNA and are
presented as the unit value of 2-ΔΔCt where ΔΔCt = ΔCt (treated worms)– ΔCt (control, lucif-
erase dsRNA-treated worms) [70,71]. ES products from treated and control worms were col-
lected and tested for cell proliferation activity (above). The time point at which maximum cell
proliferation was attained with ES products from Ov-grn-1 ds-RNA-treated flukes was used to
calculate the percent reduction in cell proliferation relative to ES products from luc dsRNA-
treated flukes. ES products from dsRNA-treated (Ov-grn-1 and luc) worms were assessed by
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SDS-PAGE with silver staining to ensure that the protein profiles were consistent between
treatments.

Gene arrays
Specific gene pathways in H69 cholangiocytes exposed to rOv-GRN-1 as described above were
investigated by qRT-PCR. Cells from 6-well plates were harvested employing a cell scraper
after 1 h (“early” time point) or 24 h (“late” time point) after the addition of recombinant pro-
teins, and total RNA was isolated using the miRNeasy Mini Kit (Qiagen). The concentration,
purity and integrity of the RNA were evaluated using spectrophotometry (Nanodrop 1000)
and an Agilent 2100 Bioanalyzer. The RNAs were stored at -80°C until processed for cDNA
synthesis and qPCR following the RT2 Profiler PCR Array protocol (Qiagen). Four RT2 Profiler
PCR Arrays (Qiagen) were screened—Wound healing (PAHS-121Z); Oncogenes and Tumor
Suppressor genes (PAHS-502Z); Epithelial-Mesenchymal Transition (EMT) (PAHS-090Z);
Toll-like Receptors (TLR) (PAHS-018Z). Ct values were exported and analyzed for significance
using RT2 Profiler PCR Array Data Analysis software version 3.5 (http://pcrdataanalysis.
sabiosciences.com/pcr/arrayanalysis.php). The relative quantitation, included in the software,
was performed using the 2-ΔΔCt method employing a panel of 5 house keeping genes as follows:
beta actin (NM_001101), beta-2-microglobulin (NM_004048), glyceraldehyde-3-phosphate
dehydrogenase (NM_002046), hypoxanthine phosphoribosyltransferase 1 (NM_000194), and
ribosomal protein, large, P0 (NM_001002). Control groups (cells exposed to media alone) were
used as calibrator samples. Three biological replicates were assessed and included in the analy-
sis. The qPCR experiments were performed using a Bio-Rad iCycler iQ5 with an initial activa-
tion step of 95°C for 10 min followed by 40 cycles of 95°C for 10 sec and 60°C for 1 min. A
melting curve analysis from 55°C to 95°C and 0.5°C temperature increment every 30 sec was
included at the end of the run.

Statistical analyses
Statistical analyses were conducted using GraphPad Prism 6.02 software. For cell proliferation
studies, two-way ANOVA with Sidak’s multiple comparison tests were used to compare the
changes in proliferation induction of ES products from Ov-grn-1- compared to luc-dsRNA
treated flukes. Degrees of freedom for the F-test output of the ANOVA were calculated with
DFn and DFd representing the degrees of freedom of the numerator and denominator, respec-
tively. For CAM studies, statistical analysis compared treatment (rOv-GRN-1) and media
alone controls using one-way ANOVA with Dunnett’s correction for multiple comparisons.
For wound healing studies, closure rate of wounds was compared by 2-way ANOVA with Dun-
nett’s correction for multiple comparisons. For proteomics studies with cell lines, differentially
expressed proteins were determined using Kruskal-Wallis Test and results were expressed in
log2 ratios. Proteins with a P-value< 0.05 and a significant log2 fold-change>0.6 or<-0.6
(for upregulated and downregulated proteins respectively) were considered in subsequent anal-
yses. For gene expression studies, the fold change values of the genes from the four analyzed
gene arrays were exported to GraphPad Prism 6.02, pooled and plotted in a volcano plot and
the significantly dysregulated genes (P� 0.05) plotted as a gene expression heatmap using
Microsoft Excel.

Supporting Information
S1 Fig. rOv-GRN-1 but not rTRX is internalized by cholangiocytes; related to Fig 1. (A)
Relative fluorescence units from a titration of Alexa Fluor 488 (AF)-labeled recombinant rOv-
GRN-1-AF and thioredoxin (rTRX-AF). (B) Fluorescence images of human H69
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cholangiocytes with nuclear stain (blue) after 16 hours of co-culture with 3 μM rOv-GRN-
1-AF (green). (C) As for panel (B) but with 3 μM rTRX-AF (green). (D) Negative control with-
out AF-labeled protein. (E) Quantification of fluorescence per cell from panels B-D performed
with AX10 software. ����P<0.0001.
(TIF)

S2 Fig. Recombinant Ov-GRN-1 internalized by cholangiocytes does not localize to major
cellular organelles. Fluorescence images and 2D histograms showing the corresponding pixel
intensities within the cell volume for the red and green channels of human H69 cholangiocytes
after 16 hours of co-culture with 3 μM rOv-GRN-1-AF (green), DAPI nuclear stain (blue) and
the organelle–specific markers (red) LAMP-1 for lysosomes (A, B), anti-EEA1 for early endo-
somes (C, D), anti-Golgin97 for golgi (E, F), and anti-GRP78 for endoplasmic reticulum (G,
H).
(TIF)

S3 Fig. Silencing of Ov-grn-1 gene expression results in significantly reduced capacity of
fluke ES products to drive proliferation of cholangiocytes; related to Fig 2. (A) qPCR valida-
tion of Ov-grn-1 knockdown. SYBR green real time PCR used to quantify Ov-grn-1 transcript
levels relative to controls electroporated with double stranded luciferase (luc). Day 0 is
untreated control. (B) ES products (10 μg/ml) from Ov-grn-1 dsRNA-treated flukes have a sig-
nificantly reduced capacity to drive proliferation of H69 cholangiocytes compared to luc
dsRNA control worms. Mean values ± SEM of three biological replicates; ��, P< 0.01.
(TIF)

S4 Fig. Comparison of Excretory/Secretory S products from adult O. viverrini treated with
double stranded RNAs for Ov-grn-1 or luciferase (luc) after 1, 3 and 5 days of in vitro cul-
ture. SDS-PAGE gels were stained with silver. Protein profiles were consistent between sam-
ples on each day of sampling.
(TIF)

S1 Table. Validation of cholangiocyte proteins for which expression levels changed signifi-
cantly after exposure to rOv-GRN-1; related to Fig 4.
(XLSX)

S2 Table. Cholangiocyte proteins that underwent significantly regulated expression by
>50% after exposure to Ov-GRN-1; related to Fig 4. This data forms the basis of Fig 4. Values
in log2, ±0.6 = fold change ±50%.
(XLSX)

S3 Table. Changes in cholangiocyte gene expression in response to exposure to rOv-GRN-
1; related to Fig 4.
(XLSX)

S4 Table. Genes for which expression levels changed significantly after exposure to Ov-
GRN-1; related to Fig 4.
(XLSX)

S1 Movie. Fly-through video depicting Ov-GRN-1 internalized within a cultured human
H69 cholangiocyte; related to Fig 1. Rendered from 3D-SIM lateral (xy) and axial (yz) over-
view images of a well-separated individual cholangiocyte viewed in Fig 1C and 1D showing
rOv-GRN-1 (green) present between the apical and basal actin filaments (red) of the cholangio-
cyte. The nucleus is stained blue.
(MOV)
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