The emergence of systematic review in toxicology

Martin L. Stephens
Kel lyn Betts
Nancy Beck
Vincent Cogliano
Kay Dickersin

See next page for additional authors

Follow this and additional works at: http://hsrc.himmelfarb.gwu.edu/sphhs_enviro_facpubs

Part of the Environmental Public Health Commons, Occupational Health and Industrial Hygiene Commons, and the Toxicology Commons

APA Citation

This Journal Article is brought to you for free and open access by the Environmental and Occupational Health at Health Sciences Research Commons. It has been accepted for inclusion in Environmental and Occupational Health Faculty Publications by an authorized administrator of Health Sciences Research Commons. For more information, please contact hsrc@gwu.edu.
Authors
Martin L. Stephens, Kellyn Betts, Nancy Beck, Vincent Cogliano, Kay Dickersin, George Gray, and +8 additional authors
ABSTRACT

The Evidence-based Toxicology Collaboration hosted a workshop on “The Emergence of Systematic Review and Related Evidence-based Approaches in Toxicology,” on November 21, 2014 in Baltimore, Maryland. The workshop featured speakers from agencies and organizations applying systematic review approaches to questions in toxicology, speakers with experience in conducting systematic reviews in medicine and healthcare, and stakeholders in industry, government, academia, and non-governmental organizations. Based on the workshop presentations and discussion, here we address the state of systematic review methods in toxicology, historical antecedents in both medicine and toxicology, challenges to the translation of systematic review from medicine to toxicology, and thoughts on the way forward. We conclude with a recommendation that as various agencies and organizations adapt systematic review methods, they continue to work together to ensure that there is a harmonized process for how the basic elements of systematic review methods are applied in toxicology.

Key words: systematic review; risk of bias; data integration.
government, academia, and non-governmental organizations. The full program and a brief summary are available online (EBTC, 2015). In this article, we expand on the workshop presentations to look at the use of systematic review approaches in toxicology, their roots in medicine and healthcare, the challenges facing practitioners, and some thoughts on the way forward, including implications for toxicologists in designing and reporting their studies.

Systematic review methods constitute a standardized approach for identifying and analyzing evidence related to clearly formulated questions (Higgins and Green, 2011; Institute of Medicine, 2011). Systematic reviews proceed through a sequence of steps, typically formulating a specific research question, developing a review protocol, performing a comprehensive literature search, selecting relevant studies, assessing the risk of bias of included studies, extracting and synthesizing the study data, rating the certainty in the findings, and interpreting and summarizing the findings (Table 1).

Compared to traditional narrative reviews, the systematic review framework is aimed at minimizing subjectivity and enhancing transparency, rigor, and consistency in the way reviews are conducted and reported (Silbergeld and Scherer, 2013). Transparency is enhanced through the drafting and posting of a protocol prior to commencing the review. The protocol specifies the research question; the literature search strategy; the inclusion/exclusion criteria for identifying relevant studies returned in the literature search; the framework for judging the quality of included studies; and the plan for data analysis, synthesis and presentation of findings. In this way, clear criteria for conducting the review are developed and specified in advance.

Although a systematic review approach increases the transparency and objectivity in the process, the conclusions of such reviews rely on the scientific judgment of the reviewers. Therefore, it is important to note that multiple reviews of a given topic will not necessarily address the same set of studies or come to the same conclusion. The basis of the scientific judgments and the conclusions should be made clear in a systematic review.

Some of the advantages and disadvantages of systematic review approaches are summarized in Table 2.

Systematic review methods, first developed for clinical medicine, have been adapted and are being used by toxicologists to synthesize available evidence, eg, on the potential association of exposure to a chemical with a particular health effect. The US National Toxicology Program, the US Environmental Protection Agency’s Integrated Risk Information System program, the European Food Safety Authority, the Evidence-based Toxicology Collaboration, the UCSF Navigation Guide, and others are implementing systematic review methods in ways that meet their diverse programmatic needs. Despite their different applications of systematic review methods, these organizations’ approaches share commonalities including the fundamental steps of a systematic review.

Table 1. The basic steps of a typical systematic review.

1. Formulating a focused research question.
2. Preparing a protocol.
3. Applying the pre-defined literature search strategy.
4. Selecting the relevant papers by applying pre-defined inclusion and exclusion criteria.
5. Assessing the risk of bias of the included studies.
6. Extracting data on both the results relevant for addressing the research question and the study methods.
7. Synthesizing the data.
8. Rating the certainty in the findings.
9. Interpreting the results and presenting a summary of findings.

SYSTEMATIC REVIEW METHODOLOGY AS APPLIED TO TOXICOLOGY

The initial steps of systematic review begin with scopeing and problem formulation to identify the question of interest, gain a sense of the relevant literature, define and refine the question, define a PECO statement (see below), and develop the review protocol. Formulating the question to be answered is a simple-sounding process but it requires careful deliberation because the question guides the review. Then, a PECO statement is developed to identify the population (P), exposure (E), comparisons (C), and outcome (O) of interest to address the review question (European Food Safety Authority, 2010). This PECO statement is used to develop the literature search criteria and the inclusion/exclusion criteria for selecting the evidence relevant to answering the research question (Krauth et al., 2013).

A subsequent step is evaluating the risk of bias or methodological quality of the included studies, as pre-specified in the review protocol. Methodological quality refers to all aspects of a study’s design, conduct, analysis, and outcome reporting that influence the study’s ability to accurately answer the question posed. Risk of bias is a major component of methodological quality and refers to systematic errors that may lead to either an overestimation or an underestimation of the true effect (Higgins and Green, 2011). Shortcomings in the design, conduct, analysis, and outcome reporting of experiments add to the “risk of bias” or reduce methodological quality. The explicit evaluation of study bias is an important feature of systematic review historically and one not considered in traditional toxicology literature reviews. Examples of risks of bias include failure to (1) adequately randomize the administered dose or exposure level to each research subject in clinical trials or experimental studies, (2) account for important confounding or modifying variables, and (3) report all measured outcomes (Rooney et al., 2014). Dose selection per se, obviously an important issue in toxicology, is usually not considered a risk of bias issue. Rather, it is an element of external validity (or directness, applicability, and the extent to which a study’s finding can be generalized to other circumstances). It remains to be determined to what extent issues of methodological quality beyond risk of bias should be incorporated in quality assessments in systematic reviews in toxicology, and the extent to which such issues are reported in research papers and thus amenable to assessment.

A growing number of tools have been developed to assess the risk of bias of environmental health studies (Krauth et al., 2013). There are published risk of bias frameworks for epidemiological studies and animal studies, but no such tools for in vitro studies or mechanistic data (Samuel et al., in press). However, there is a published approach in which mechanistic data are assessed for both methodological and reporting quality. The ToxRTool was created with funding from the European Commission and uses Klimisch codes (1 = reliable without restriction, 2 = reliable with restrictions, 3 = not reliable, and 4 = not assignable) (Klimisch et al., 1997) to evaluate and categorize the quality of toxicological data, including in vitro studies (Schneider et al., 2009).

Another major step in applying systematic review approaches to toxicology is integrating the evidence within and across diverse study types (eg, in vivo, in vitro, and human...
TABLE 2. Some advantages and disadvantages of systematic reviews.

<table>
<thead>
<tr>
<th>Advantages</th>
<th>Disadvantages</th>
</tr>
</thead>
<tbody>
<tr>
<td>A protocol for how the review will be conducted—written in advance—reduces the likelihood that ad hoc changes will be made that bias the outcomes. In cases where the protocol is published or otherwise shared with interested parties in advance of the actual review, stakeholders are thereby given the opportunity to recommend changes.</td>
<td>Assessing the risk of bias or broader methodological quality of the included studies gives reviewers and readers a sense of how much confidence to have in the review’s conclusions.</td>
</tr>
<tr>
<td>The incorporation of explicit criteria for including and excluding individual studies gives readers of the review a clear rationale for why some studies were included or excluded.</td>
<td>Reviews that assess certain studies as having a high risk of bias are likely to encourage the authors of those studies to improve the quality of their future research.</td>
</tr>
<tr>
<td>Assessing the risk of bias or broader methodological quality of the included studies gives reviewers and readers a sense of how much confidence to have in the review’s conclusions.</td>
<td>The explicit and transparent nature of the review process and its published review give readers a clear sense of how the review was carried out. This also enables interested parties to replicate the review, with or without making any protocol amendments deemed desirable.</td>
</tr>
<tr>
<td>Under certain conditions, data synthesis lends itself to meta-analysis, which provides a quantitative summary of the data from individual studies and overall.</td>
<td>Even once familiar with the process and tools, conducting a systematic review is still likely to take considerable time and labor. Review teams are likely to include, at a minimum, an information specialist, a systematic review “methodologist,” and subject-matter experts.</td>
</tr>
<tr>
<td>Although the basic framework for systematic reviews has remained the same across the fields to which it has been applied already, those seeking to apply this methodology to a new field will likely face some challenges not fully addressed by the experience gained in these other fields.</td>
<td>In the OHAT framework, evidence integration begins with the process for rating confidence in the findings for each body of evidence separately (eg, human and animal studies on a particular outcome) based on the GRADE approach (Guyatt et al., 2008) with modifications on the initial starting point for observational human studies. It includes guidance for human and animal studies and a process for considering mechanistic studies. Rating confidence in the body of evidence is developed using the GRADE factors that reflect strengths and weaknesses of a body of evidence (eg, dose response, or indirectness) with an additional factor that may increase confidence in the association between exposure and health outcome when there is consistency of the response across species, study designs, or human populations. These ratings are translated into levels of evidence for each health effect based on whether the reviewed studies do or do not show an adverse effect. Finally, the degree of support from mechanistic studies is considered and the 3 evidence streams (human, animal, mechanistic) are integrated to reach a hazard conclusion of “known,” “presumed,” “suspected,” or “not classifiable” as a hazard to humans that reflects the confidence and consistency across each body of evidence.</td>
</tr>
<tr>
<td>In the OHAT framework, evidence integration begins with the process for rating confidence in the findings for each body of evidence separately (eg, human and animal studies on a particular outcome) based on the GRADE approach (Guyatt et al., 2008) with modifications on the initial starting point for observational human studies. It includes guidance for human and animal studies and a process for considering mechanistic studies. Rating confidence in the body of evidence is developed using the GRADE factors that reflect strengths and weaknesses of a body of evidence (eg, dose response, or indirectness) with an additional factor that may increase confidence in the association between exposure and health outcome when there is consistency of the response across species, study designs, or human populations. These ratings are translated into levels of evidence for each health effect based on whether the reviewed studies do or do not show an adverse effect. Finally, the degree of support from mechanistic studies is considered and the 3 evidence streams (human, animal, mechanistic) are integrated to reach a hazard conclusion of “known,” “presumed,” “suspected,” or “not classifiable” as a hazard to humans that reflects the confidence and consistency across each body of evidence.</td>
<td></td>
</tr>
<tr>
<td>In the OHAT framework, evidence integration begins with the process for rating confidence in the findings for each body of evidence separately (eg, human and animal studies on a particular outcome) based on the GRADE approach (Guyatt et al., 2008) with modifications on the initial starting point for observational human studies. It includes guidance for human and animal studies and a process for considering mechanistic studies. Rating confidence in the body of evidence is developed using the GRADE factors that reflect strengths and weaknesses of a body of evidence (eg, dose response, or indirectness) with an additional factor that may increase confidence in the association between exposure and health outcome when there is consistency of the response across species, study designs, or human populations. These ratings are translated into levels of evidence for each health effect based on whether the reviewed studies do or do not show an adverse effect. Finally, the degree of support from mechanistic studies is considered and the 3 evidence streams (human, animal, mechanistic) are integrated to reach a hazard conclusion of “known,” “presumed,” “suspected,” or “not classifiable” as a hazard to humans that reflects the confidence and consistency across each body of evidence.</td>
<td></td>
</tr>
<tr>
<td>A protocol for how the review will be conducted—written in advance—reduces the likelihood that ad hoc changes will be made that bias the outcomes. In cases where the protocol is published or otherwise shared with interested parties in advance of the actual review, stakeholders are thereby given the opportunity to recommend changes.</td>
<td>Assessing the risk of bias or broader methodological quality of the included studies gives reviewers and readers a sense of how much confidence to have in the review’s conclusions.</td>
</tr>
<tr>
<td>The incorporation of explicit criteria for including and excluding individual studies gives readers of the review a clear rationale for why some studies were included or excluded.</td>
<td>Reviews that assess certain studies as having a high risk of bias are likely to encourage the authors of those studies to improve the quality of their future research.</td>
</tr>
<tr>
<td>Assessing the risk of bias or broader methodological quality of the included studies gives reviewers and readers a sense of how much confidence to have in the review’s conclusions.</td>
<td>The explicit and transparent nature of the review process and its published review give readers a clear sense of how the review was carried out. This also enables interested parties to replicate the review, with or without making any protocol amendments deemed desirable.</td>
</tr>
<tr>
<td>Under certain conditions, data synthesis lends itself to meta-analysis, which provides a quantitative summary of the data from individual studies and overall.</td>
<td>Even once familiar with the process and tools, conducting a systematic review is still likely to take considerable time and labor. Review teams are likely to include, at a minimum, an information specialist, a systematic review “methodologist,” and subject-matter experts.</td>
</tr>
<tr>
<td>Although the basic framework for systematic reviews has remained the same across the fields to which it has been applied already, those seeking to apply this methodology to a new field will likely face some challenges not fully addressed by the experience gained in these other fields.</td>
<td>In the OHAT framework, evidence integration begins with the process for rating confidence in the findings for each body of evidence separately (eg, human and animal studies on a particular outcome) based on the GRADE approach (Guyatt et al., 2008) with modifications on the initial starting point for observational human studies. It includes guidance for human and animal studies and a process for considering mechanistic studies. Rating confidence in the body of evidence is developed using the GRADE factors that reflect strengths and weaknesses of a body of evidence (eg, dose response, or indirectness) with an additional factor that may increase confidence in the association between exposure and health outcome when there is consistency of the response across species, study designs, or human populations. These ratings are translated into levels of evidence for each health effect based on whether the reviewed studies do or do not show an adverse effect. Finally, the degree of support from mechanistic studies is considered and the 3 evidence streams (human, animal, mechanistic) are integrated to reach a hazard conclusion of “known,” “presumed,” “suspected,” or “not classifiable” as a hazard to humans that reflects the confidence and consistency across each body of evidence.</td>
</tr>
<tr>
<td>In the OHAT framework, evidence integration begins with the process for rating confidence in the findings for each body of evidence separately (eg, human and animal studies on a particular outcome) based on the GRADE approach (Guyatt et al., 2008) with modifications on the initial starting point for observational human studies. It includes guidance for human and animal studies and a process for considering mechanistic studies. Rating confidence in the body of evidence is developed using the GRADE factors that reflect strengths and weaknesses of a body of evidence (eg, dose response, or indirectness) with an additional factor that may increase confidence in the association between exposure and health outcome when there is consistency of the response across species, study designs, or human populations. These ratings are translated into levels of evidence for each health effect based on whether the reviewed studies do or do not show an adverse effect. Finally, the degree of support from mechanistic studies is considered and the 3 evidence streams (human, animal, mechanistic) are integrated to reach a hazard conclusion of “known,” “presumed,” “suspected,” or “not classifiable” as a hazard to humans that reflects the confidence and consistency across each body of evidence.</td>
<td></td>
</tr>
</tbody>
</table>

AGENCY FRAMEWORKS AND OTHER EFFORTS

The Office of Health Assessment and Translation (OHAT) of the National Institute of Environmental Health Sciences has created a framework for applying systematic review methods to environmental health questions, including methods to develop conclusions from the full range of relevant data (human, animal and in vitro data) (Rooney et al., 2014). The OHAT approach was developed in a process involving public comment and consultation with experts from toxicology and systematic review, building on and extending guidance from major systematic review groups (eg, the Cochrane Collaboration (Higgins and Green, 2011), Agency for Healthcare Research and Quality (Viswanathan et al., 2013), GRADE Workgroup (Guyatt et al., 2011), and the Navigation Guide Work Group (Woodruff and Sutton, 2014)). The evaluation process begins with a problem formulation step to form the specific research question and the PECO statement, and then involves the development of a protocol for conducting the review. The protocol outlines the methods for the evaluation tailored to the research question, including the literature search strategy, inclusion/exclusion criteria, risk of bias approach, establishing confidence in the evidence, and methods for evidence integration.
assessments must address disparate data, such as different ani-
mal species and strains that may tolerate different doses, differ-
ing results (ie, an effect occurs in one species but not another),
or occupational studies conducted while exposure levels change,
ec, use of protective equipment, or changing industrial
processes.

The IRIS program’s emerging approach to systematic review
is similar to OHAT’s, and it includes a step for systematic inte-
gration of evidence for each health outcome. Both the NRC re-
view (NRC 2014) and a subsequent workshop on the subject
suggested that guided expert judgment, coupled with structured
processes, are required for integrating IRIS evidence streams
(US Environmental Protection Agency, 2015b).

After evidence integration, IRIS assessments characterize
exposure-response relationships related to the EPA’s need for
toxicity values. The process for selecting studies to assess those
relationships is similar to that of a systematic review. The
agency is currently developing methods to combine results of
the selected studies.

Systematic reviews typically include a literature-search cut-
off date, after which “late-breaking” studies are not considered.
Because IRIS evaluations are expected to consider late-breaking
studies if they would change major conclusions, the EPA has de-
veloped a process for considering pivotal studies that are pub-
lished after the literature search has closed (US Environmental
Protection Agency, 2014). In general, new studies can be in-
cluded until an assessment is readied for peer review. After
peer review, the presumption shifts to not including new stud-
ies unless they have an impact on the credibility of an assess-
ment’s conclusions. Examples might be a strong new study that
indicates a heretofore undiscovered health effect, or a strong
new study that might change, in either direction, a major
conclusion.

The European Food Safety Authority (EFSA) has been using
systematic review approaches for a few years to fulfill its man-
dates. The Authority uses the reviews mainly for 2 different
kinds of risk assessments: (1) for the evaluation of applications
submitted with the goal of having a specific product, such as a
pesticide, feed additive, or genetically modified organism, au-
thorized for use in the EU, and (2) for generic assessments.
Generic assessments review issues that arise within a wide
range of areas where EFSA has jurisdiction, including animal
health and welfare, plant health, feed additives, food actives,
food contact materials, and health and nutrition claims. EFSA
must also appraise systematic reviews conducted by applicants.

EFSA published its first guidance document on systematic
reviews in 2010 with a team of authors that included experts
from the Cochrane Collaboration and other groups performing
systematic reviews in relevant fields (European Food Safety
Authority, 2010). The organization has been conducting system-
atic review trainings.

EFSA has also produced reports on prioritizing questions for
systematic review in risk analysis and on sources of evidence
relevant for EFSA risk assessments (European Food Safety
Authority, 2015a; O’Connor et al., 2012). In 2013 and 2014, EFSA
authorized the creation of 23 systematic reviews on topics in-
cluding pesticides, nutrition, feed, animal health, plant health,
contaminants, biological hazards, genetically modified organ-
isms, and methodologies. The Authority is committed to mak-
ing the data from systematic reviews publicly available.

More recently, EFSA began what it calls the PROmoting
METHODs for Evidence Use in Science (Prometheus) project
to further enhance the scientific rigor of the methodological
approaches used in dealing with evidence. The project was
based on the recognition that evidence is needed in all assess-
ments and the process for collecting, appraising, and analyzing
it should be the same regardless of the objectives of the assess-
ment or who conducts it. Assessments focused on efficacy,
safety, and risk should all follow the same process. Another ra-

tionale for the Prometheus project is to address the issues pre-

tected when evidence is not available or there is insufficient
time for applying extensive or complex approaches. EFSA re-
cently published a report on the resulting methodological
framework (European Food Safety Authority, 2015b).

The Authority is also working on a report on how to analyze data
gaps and the impacts thereof.

The EBTC is particularly interested in the Cochrane
Collaboration’s emerging methodology for systematic reviews
of diagnostic test accuracy in medicine (Cochrane
Collaboration, 2015) and its application to test method assess-
ment in toxicology (Hoffmann and Hartung, 2005). The EBTC is
using this approach to conduct a systematic review of zebrafish
embryo testing as a predictor of developmental toxicity (de Vries
et al., 2014). The aim is determine how well zebrafish em-

antry testing identifies teratogenesis, as compared to results
from standard mammalian test protocols in rats and rabbits.

A primary driver for this review is to identify whether the
zebrafish could serve as a partial replacement for the routine
test for prenatal development, Test Guideline 414 of the
Organisation for Economic Cooperation and Development. This
test is costly in terms of money, time, and animals (primarily
rabs and rats) (Selderslaghs et al., 2009).

ANTecedENTS

Systematic reviews are the hallmark of evidence-based medi-

ne, which has been defined as the conscientious, explicit and
judicious use of current best evidence in making decisions
about the care of individual patients (Sackett et al., 1996).
Evidence-based medicine involves integrating individual clini-
cal expertise with the best available external evidence from sys-

tematic research (Sackett et al., 1996). The creation of
organizations that shaped and promoted evidence-based medi-

ne, such as the Cochrane Collaboration, facilitated the devel-

go of rigorous methods (Cochrane Collaboration, 2015). Systematic
reviews have been defined as “an overview of pri-

mary studies which contains an explicit statement of objectives,
materials and methods and has been conducted according to
explicit and reproducible methodology” (Greenhalgh, 1997). In
clinical medicine, such knowledge syntheses have proven “es-

sential to advance practice and research through consolidation of
evidence” (Colquhoun et al., 2014).

The U.S. government has launched numerous initiatives for
systematic review, including the Evidence-based Practice
Centers, which perform systematic reviews of treatment inter-
ventions across a wide spectrum of health conditions, and the
U.S. Preventive Services Task Force, which performs reviews in
the area of preventive medicine, including topics related to
screening, counseling, and preventive medicines. In 2011, an
Institute of Medicine panel published recommendations for the
preparation of systematic reviews (Institute of Medicine, 2011).

Early promoters of the idea of translating the systematic re-

view process from medicine to the field of toxicology included
Philip Guzelian, who coined the term “evidence-based toxicol-
ogy,” and Thomas Hartung and Sebastian Hoffmann, who were
interested in applying the process to assessments of test
method performance/validation (Guzelian et al., 2005; Hoffmann
and Hartung, 2006). Hartung founded the Evidence-based
Toxicology Collaboration in 2011 (Stephens et al., 2013). As in medicine, evidence-based approaches in toxicology include not only evidence synthesis across studies (systematic review) but also the application of individual elements of systematic review methodology to other contexts, such as appraising the risk of bias of an individual article or appraising the quality of evidence in regulatory submissions.

Among the first actual systematic reviews in toxicology and environmental health were those conducted by Navas-Acien, Silbergeld, and colleagues, examining the association between exposure to environmental chemicals and human health effects (Navas-Acien et al., 2005; Navas-Acien et al., 2006; Navas-Acien et al., 2008). These early reviews examined in vivo, in vitro, and epidemiological evidence to address specific questions. More recent reviews, including those by The Navigation Guide Work Group, have further explored how these diverse data streams could be integrated in a systematic review (Johnson et al., 2014; Koustaś et al., 2014; Lam et al., 2014; Woodruff et al., 2011).

CHALLENGES

The challenges currently facing the more widespread application of systematic review approaches in toxicology are manifold.

- **Data integration:** Toxicology includes a diversity of study types providing relevant data. How and when evidence is integrated across study types is a subject that deserves careful thought to ensure that the process is transparent and replicable.

- **Data accessibility:**
 - Much of the data in toxicologically relevant databases is not publicly accessible. Some study data is available in databases that are not traditionally considered part of the scientific literature. How to include information from this format in systematic reviews is unclear, particularly if it is presented only in summary form. Other concerns relate to data that is proprietary or in formats that may not be exchangeable.
 - Retrieving toxicology data from PubMed is challenging because of the lack of MeSH (Medical Subject Headings) terms to subdivide toxicology. Therefore current best practices include MeSH terms and text word searches to identify the relevant literature.
 - In toxicology, no one information portal exists that is analogous to the one available for evidence-based medicine’s online Cochrane Library, which provides up-to-date information independently generated by practitioners throughout the world about the effectiveness of health care interventions via 6 databases, including one focused on systematic reviews.
 - Efforts are underway to encourage industry stakeholders to share detailed data without putting competitive advantage at risk.

- **Risk of bias:** Application of risk of bias assessment methods to toxicology studies suggests that several possible sources of bias (randomization of treatment, lack of allocation concealment, and lack of blinding of outcome assessors) may be widespread among toxicology studies (Koustaś et al., 2014). This, in turn, suggests that the toxicological community should be better trained in using study design and conduct procedures to avoid risk of bias issues. Moreover, information from studies that generate negative data are not always published—a form of publication bias.

- **Expert judgment:** Exactly what constitutes the proper role for expert judgment in the context of a systematic review also merits some consideration and, potentially, guidance. The kind of expert judgment used in conducting a systematic review is and should be separate from the kind of expert judgment involved in making policy. A related challenge is the misperception that evidence-based approaches leave no room for professional judgment. Systematic reviews should strive to make expert judgments clear along with the scientific basis for those judgments in developing conclusions for a systematic review. Analyzing the approach that has been developed for involving expert judgment in risk analysis may prove helpful in efforts to determine how to best use expert judgment in systematic reviews for toxicology (Cooke and Goossens, 2008; Morgan, 1992).

- **Workload manageability:** For the EPA, which must sometimes contend with evaluating topics that have been the subject of thousands of studies, there is interest in finding ways to limit the literature search at the outset of a study while still including all truly informative studies. Some of the workload issues that the agency must contend with may have more to do with external validity than risk of bias. The EBTC is also seeking to develop streamlined approaches to data identification to enhance workload manageability without compromising evidence-based principles. There are also inherent challenges with the goals of each review, as an evaluation of all health effects potentially associated with a chemical will be necessarily broad compared with a focused review of a single health effect.

Other issues:

- Sufficient primary studies may not exist to adequately answer the review question. In these cases, the outcome of the systematic review would identify data gaps and research needs.
- Thought should be given as to who should be included on the work groups that conduct systematic reviews or subsequent peer reviews, including whether they should include regulators or other “customers” of systematic reviews.

WAY FORWARD

The challenges identified above to the advancement of systematic review approaches in toxicology, including issues of data accessibility, data integration, and workload manageability, are formidable. Recognition of these challenges is the starting point for further discussion and priority setting. Many of the workshop speakers—who are among the vanguard of those seeking to apply systematic review approaches in toxicology—expressed a willingness to continue to work together closely, where appropriate, to advance the field.

A strength of evidence-based medicine is that approaches such as systematic review and meta-analysis are quite uniformly applied. In translating these approaches, it is important that the safety sciences pursue a harmonized process and avoid, where possible, major discrepancies in terminology and approach driven by organizational preferences. A recent harmonization effort explored the similarities and differences in the use of risk of bias methods across organizations (Rooney et al., 2016). The EBTC is committed to fostering the necessary international dialogue to facilitate this harmonization.

For its part, the EBTC is hoping, in time, to apply systematic review methodology to “qualify” biological pathways and pathway-based test methods for application to 21st century toxicology approaches. In this context, pertinent questions to pursue via literature review are whether proposed pathways reflect...
actual pathways in the human body and whether proposed pathway-based tests do a good job of tracking perturbations to the pathways in question. These questions are related to the thorny issue of test method validation. More generally, evidence-based toxicology can aid in evaluating new mechanistic in vitro tools for assessing toxicity (Hartung, 2010). The new evaluation approaches compare well to traditional validation approaches in that they are more systematic and able to focus on mechanistic relevance, rather than on predicting animal data (Hartung et al., 2013). Approaches for how the methodology can be used to validate high-throughput assays in support of 21st century toxicity testing are being developed (Judson et al., 2013).

The issue of training came up repeatedly during the workshop. The Johns Hopkins Center for Alternatives to Animal Testing (CAAT) is developing a course, to commence in 2016, on systematic review and evidence-based toxicology.

Finally, the emergence of systematic review frameworks in toxicology has implications for practicing toxicologists, who, like any scientist, would want their data to be used in decision-making. For that to happen in the context of a systematic review, the relevance of published studies would be judged based on the PECO statement and the review’s inclusion/exclusion criteria. These criteria depend heavily on the topic being reviewed but they generally favor studies that are well-designed with respect to issues such as choice of study subjects (eg, species, strain, age), dosages, and routes of administration. If included, the results would be assessed for study quality including risk of bias, which addresses issues that may be less familiar to toxicologists. To increase the likelihood that study data are used, toxicologists can minimize risk of bias through choices in study design and reporting, such as incorporation of techniques to ensure randomization and allocation concealment in assigning animals to treatment groups, and then blinding of the outcome assessors to the treatment groups. Interested toxicologists could begin to gain a familiarity with this topic by consulting, eg, the discussion of risks of bias in the NTP/OHAT systematic review framework (Rooney et al., 2014). At a more basic level, toxicologists should take care to draft the titles, abstracts, and key words of their published work to ensure ready retrieval in literature reviews of the subject, and to report study methods in sufficient detail as to allow an assessment of risk of bias/metho- odological quality by reviewers (Samuel et al., in press).

FUNDING

This work was supported by funding from an anonymous private charitable foundation and the ExxonMobil Foundation to the Johns Hopkins Center for Alternatives to Animal Testing (CAAT). CAAT serves as the secretariat for the Evidence-based Toxicology Collaboration, which hosted the workshop on which this article is based. Only those authors working at or for CAAT (K.B., T.H., S.H., and M.L.S.) received compensation from these sources via CAAT for their participation in the workshop or their preparation of this article.

Disclaimer: This paper does not necessarily represent the views or policies of the U.S. EPA.

REFERENCES

