A Role of Central NELL2 in the Regulation of Feeding Behavior in Rats.

Jin Kwon Jeong
George Washington University

Jae Geun Kim

Han Rae Kim

Tae Hwan Lee

Jeong Woo Park

See next page for additional authors

Follow this and additional works at: http://hsrc.himmelfarb.gwu.edu/smhs_pharm_facpubs

Part of the Medical Pharmacology Commons, Medical Physiology Commons, Pharmacology Commons, and the Physiology Commons

APA Citation

This Journal Article is brought to you for free and open access by the Pharmacology and Physiology at Health Sciences Research Commons. It has been accepted for inclusion in Pharmacology and Physiology Faculty Publications by an authorized administrator of Health Sciences Research Commons. For more information, please contact hsrc@gwu.edu.
Authors
Jin Kwon Jeong, Jae Geun Kim, Han Rae Kim, Tae Hwan Lee, Jeong Woo Park, and Byung Ju Lee

This journal article is available at Health Sciences Research Commons: http://hsrc.himmelfarb.gwu.edu/smhs_pharm_facpubs/158
A brain-enriched secreting signal peptide, NELL2, has been suggested to play multiple roles in the development, survival, and activity of neurons in mammal. We investigated here a possible involvement of central NELL2 in regulating feeding behavior and metabolism. In situ hybridization and an immunohistochemical approach were used to determine expression of NELL2 as well as its colocalization with proopiomelanocortin (POMC) and neuropeptide Y (NPY) in the rat hypothalamus. To investigate the effect of NELL2 on feeding behavior, 2 nmole of antisense NELL2 oligodeoxynucleotide was administered into the lateral ventricle of adult male rat brains for 6 consecutive days, and changes in daily body weight, food, and water intake were monitored. Metabolic state-dependent NELL2 expression in the hypothalamus was tested in vivo using a fasting model. NELL2 was noticeably expressed in the hypothalamic nuclei controlling feeding behavior. Furthermore, all arcuatic POMC and NPY positive neurons produced NELL2. The NELL2 gene expression in the hypothalamus was up-regulated by fasting. However, NELL2 did not affect POMC and NPY gene expression in the hypothalamus. A blockade of NELL2 production in the hypothalamus led to a reduction in daily food intake, followed by a loss in body weight without a change in daily water intake in normal diet condition. NELL2 did not affect short-term hunger dependent appetite behavior. Our data suggests that hypothalamic NELL2 is associated with appetite behavior, and thus central NELL2 could be a new therapeutic target for obesity.

Keywords: feeding behavior, hypothalamus, metabolic state, NELL2, neural plasticity

INTRODUCTION

It has been proposed that the central nervous system plays a major function in appetite behavior, as well as whole body energy homeostasis. Within the central nervous system, a great focus has been made in and around the circumventricular organs of the hypothalamus, including the arcuate nucleus (ARC) and ventromedial hypothalamus (VMH) which are a first responder of circulating metabolic signal molecules as well as the paraventricular nucleus (PVN) as a deeper brain area integrating both peripheral and central metabolic signals, in energy metabolism strong underlining with an anatomical circuitry as well as molecular cascades among these hypothalamic areas (Baskin et al., 1999; Elias et al., 1999; King, 2006; Schwartz et al., 1997). In addition, several recent reports have also implied a critical function of synaptic plasticity in the hypothalamus in maintaining energy homeostasis (Horvath, 2005; Horvath and Diano, 2004; Horvath and Gao, 2005; Pinto et al., 2004).

Originally found as a NEL in chicken as a brain specific epidermal growth factor family protein, a novel molecule NELL2, a mammalian homologue of chicken NEL is also expressed dominantly in rat brain as a glycosylated secreting protein...
functions in neuronal proliferation, differentiation, synaptic formation and plasticity during development and postnatal life (Choi et al., 2014; Jeong et al., 2008b; Kim et al., 2002; Matsuyama et al., 2004; Nelson et al., 2002; Oyasu et al., 2000). Our group has established the antisense oligodeoxynucleotide (AS ODN)-dependent gene modification system and applied NELL2 AS ODN into the rat brain hypothalamus for a cessation of NELL2 production in this region (Jeong et al., 2008b; Kim et al., 2002). Using this approach, our group has demonstrated that NELL2 is an active downstream signaling molecule in estrogen pathway during neuroprotection in the rat brain (Jeong et al., 2008b). We also reported a crucial function of central NELL2 in certain behavior in rats, such as sexual behavior as well as in regulating female estrous cycle (Jeong et al., 2008b; Ryu et al., 2011).

Although NELL2 is broadly distributed in the brain, considerably high expression of NELL2 is observed within certain hypothalamic areas, including the PVN, VMH, and the ARC, all of which are known to be important in regulating metabolism (Jeong et al., 2008a). Therefore, we sought to investigate here a possible role of central NELL2 in the regulation of metabolism in rats. We first determined the expression of NELL2 in the hypothalamic areas that are important in feeding behavior and metabolism regulation using histological approaches. Then, we tested a potential role of central NELL2 in feeding behavior by administration of NELL2 AS ODN in the hypothalamus. Lastly, we determined whether metabolic state could also affect NELL2 expression in the hypothalamus using a fasting model. NELL2 is expressed in several hypothalamic regions that regulate metabolism, and rats lacking NELL2 production in the hypothalamus showed an attenuation of daily food intake on regular chow diet without a change in water intake, and therefore developed a lean phenotype compared to the control group. The NELL2 expression in the hypothalamus was elevated in fasting conditions compared to the fed state. However, NELL2 did not affect gene expression of either proopiomelanocortin (POMC) or neuropeptide Y (NPY) although NELL2 is expressed in these neurons. Our data suggests that a novel secreting protein NELL2 is one of the hypothalamic regulatory molecules in controlling appetite behavior in rats, and central NELL2 signaling may be a potential therapeutic target for obesity and type 2 diabetes.

MATERIALS AND METHODS

Animals

We purchased adult male Sprague-Dawley rats (8 weeks old, about 230-250 g) from a local breeder (Daehan Animal Breeding Company, Korea) and maintained them in our animal facility at the University of Ulsan. The rats had ad libitum access to a standard diet and tap water under 12 h dark/12 h light (from 6:00 a.m. to 6:00 p.m.) conditions. Temperature was kept at 19°C during the experiment. All procedures involving rats were approved by the Regulation of Animal Care at the University of Ulsan and were in accordance with the NIH Guide for the Care and Use of Laboratory Animals.

Radioactive in situ hybridization (ISH)

We designed a PCR primer set (forward: 5'-agttcatcacagctgctg-3'; backward: 5'-acagagacactgtgcttc-3') based on the rat NELL2 mRNA sequence (NM 031070 from NCBI GenBank) and cloned an 899 bp PCR product in a pEZ-T vector (RNA Incorp., South Korea). We generated 32P-labeled sense and antisense riboprobes for NELL2 and purified them using G-50 columns as described previously (Mello et al., 1997). These riboprobes were then used for radioactive ISH. Adult male rats (n = 4) were decapitated and their brains were dissected, placed in an embedding mold with a Tissue-tek (Sakura, USA), and frozen in dry ice. Brains were then cut at 10 μm thickness coronally on a cryostat (Leica's CM 1850, Wetzlar, Germany) and stored at –80°C until use. After post-fixation for 5 min at room temperature (RT) in 4% paraformaldehyde in 0.1 M phosphate buffered saline (PBS) followed by air dehydration, the slides were acetylated for 10 min at RT in 0.135% triethanolamine and 0.0025% acetic anhydride in RNase free water. After the air dehydration, the sections were hybridized overnight at 65°C in a hybridization buffer [50% formamide, 2×SSPE (17.53 g of sodium chloride, 2.76 g of sodium phosphate monobasic hydrous and 0.74 g of EDTA), 32 μg of tRNA, 16 μg of BSA and 16 μg of poly A per section], containing sense or antisense riboprobes (500,000 cpm per section), in an oil bath. The sections were washed sequentially for 1 h at RT in 2×SSPE and for 1 h at 65°C in 2×SSPE/50% formamide, followed by two high stringency washes for 30 min each at 65°C in 0.1x SSPE. The sections were then dehydrated and subjected to a phosphorimager autoradiography (Optic Quant Phosphorimage Analysis System, Packard Bioscience, USA).

Immunohistochemistry (IHC)

Animals were anesthetized with tribromoethanol (250 mg/kg B.W., Sigma), then perfused transcardially with 100 mL of 0.1 M phosphate buffer (PB, pH 7.4), followed by 100 mL of 4% paraformaldehyde in PB. Brains were then decapitated and post-fixed with 20% sucrose overnight at 4°C. Brains were coronally sectioned using a cryostat with a 20 μm thickness after Tissue-tek embedding and stored at –80°C until use. The sections were air-dried overnight at RT before IHC and then incubated sequentially for 30 min each in PB, 0.3 M H2O2, and blocking buffer (4% skim milk, 0.3% Triton X-100 in PB) at RT. After 3 washes in PB for 5 min each at RT, the sections were incubated in an Avidin/Biotin blocking system following the manufacturer’s protocol (Vector, USA). The sections were then incubated for 2 h at RT with primary antibodies in a humidified chamber. Antibodies used in this study were anti-NELL2 antiserum (1:1,000, Jeong et al., 2008a; 2008b), anti-POMC (1:500, Santa Cruz Biotechnology, USA) and anti-NPY (1:50, Santa Cruz Biotechnology). The sections were then incubated for 2 h with biotinylated secondary antibodies (anti-rabbit IgG, 1:500 for NELL2: anti-goat IgG, 1:500 for POMC and NPY; Vector, USA). This incubation was followed by 3 washes with a slow agitation in PB for 10 min each. The sections underwent another 2 h incubation with an ABC kit (Vector) to amplify signals at RT, and finally, signals were visualized using a
Tyramide Signal Amplification (TSA) system (TSA-plus fluorescent; Cat. No. NEL741 for green and NEL744 for red, PerkinElmer, USA). Three washes in PB for 10 min each with a slow agitation at RT were done between each step above. The sections were coverslipped with a GVA mounting solution (Zymed Lab., USA) and subjected to a microscopy. For double IHC, we used two primary antibodies together (NELL2 and other) and then developed one signal first. Slides were incubated in 0.3% H2O2 for 30 min at RT and were followed by 3 washes for 10 min each with a slow agitation in PB. The second signal was then developed and the slides were imaged using a confocal microscope (Fluoview FV500; Olympus, Japan).

Animal behavioral study after a cessation of NELL2 production in the hypothalamus

We have previously used the AS ODN to block de novo synthesis of NELL2 in the adult rat hypothalamus (Kim et al., 2002). In this study, rats were divided into 3 groups: 1) 2 nmole of NELL2-AS in ACSF (n = 9), 2) 2 nmole of NELL2-SCR in ACSF (n = 6), and 3) ACSF (n = 5). Each treatment was injected into the lateral ventricle daily at 12:00 p.m. for 6 days without anesthesia via a stereotaxically implanted cannula (Kim et al., 2002). Range of body weight at the first day of injection was 280-300 g. Food and water consumption and body weight were measured daily at 12:30 p.m. during the experimental period. For the fasted-refed study, NELL2-AS (n = 3) or NELL2-SCR (n = 4) was administered into the brain as above at 12:00 p.m. for 3 days. On second day of the experimental period, food was removed for overnight. Food was provided again at 12:00 p.m. following day, and animal’s food intake was measured for 1 h, 4 h, 8 h and 24 h period.

Determination of NELL2 transcript after food deprivation

Food was removed for 48 h starting at 10:00 a.m. with water available ad libitum to create a fasting condition for the animals (n = 4), while control animals (n = 4) had a free access to food and water during the experiment. The animals were later sacrificed, and the hypothalamus was obtained and used for RT-PCR to detect NELL2 transcript.

NELL2 on POMC and NPY gene expression

To test whether NELL2 affects POMC or NPY transcription, NELL2-AS (n = 5) or NELL2-SCR (n = 4) was administrated for 3 consecutive days at 12:00 p.m. everyday. Animals from both groups were sacrificed at 7:00 p.m., and the MBH was carefully removed and used for RT-PCR to detect POMC and NPY transcripts (Kim et al., 2006).

Relative reverse transcription (RT)-PCR

For the study of metabolic state-dependent NELL2 gene expression, total RNA from the rat hypothalamus of the control (n = 4) and the 48-h fasted animals (n = 4) was isolated by a TRIzol reagent (Sigma) and reverse transcribed using 2 μg of the total RNA. PCR was performed for 35 cycles at 94°C for 30 s, 57°C for 30 s and 72°C for 45 s, using a primer set (forward: 5′-ATG GAA TCC CGG GTA TTA CTG-3′; backward: 5′-GGC TAA GGA GAG CCT GTG CC-3′) to obtain a 500 bp NELL2 fragment. For the study of NELL2 effects on POMC and NPY synthesis, the MBH from the NELL2 AS or NELL2 SCR subjects was isolated, reverse transcribed, and amplified by PCR for 25 cycles at 94°C for 30 s, 56°C for 30 s, and 72°C for 35 s, using two sets of primers: POMC forward, 5′-AGT ACG TCA TGG GTC ACT TC-3′; backward, 5′-CAG CCT CTT CTT GAA CTC TA-3′; NPY forward, 5′-GCT AGG TAA CAA ACC AAT GG-3′; backward, 5′-GCA TTT TCT GTG CTT TCT CT-3′. For a quantity control of all PCR experiments, GAPDH was amplified using a primer set (forward, 5′-TGT GAA CCG ATT TGG CCG TA-3′; backward, 5′-ACT TGC CGT GGG TAG AGT CA-3′) for 25 cycles under the same conditions. All PCR products were analyzed with the NIH image software and normalized to the GAPDH.

Statistic analysis

Changes in food, water intake, and body weight were analyzed by two-way ANOVA using a Turkey’s multiple comparison test with Prism 7 software (GraphPad, USA). Data in the figures and text are presented as means. Unpaired student’s t test was also used to compare between values of NELL2 AS ODN and NELL2 SCR ODN. In all cases, a difference at P < 0.05 was considered statistically significant and the range of significance was indicated as *P < 0.05, **P < 0.01 and ***P < 0.001.

RESULTS

NELL2 expression in the hypothalamic areas important for metabolism regulation

In the previous study, we have shown that NELL2 gene was profoundly expressed in diverse mammalian brain areas including several hypothalamic nuclei, such as the VMH, PVN and the ARC (Jeong et al., 2008a), all of which known to play a key role in energy homeostasis. In addition, AS ODN-mediated cessation of NELL2 production in the hypothalamus of rats induced a lean phenotype under regular diet condition compared to the control group (our unpublished data). Therefore, we studied here a potential role of central NELL2 in energy homeostasis in rats with a primary focus on NELL2-dependent animal feeding behavior. To this end, we first performed radioactive in situ hybridization as well as immunohistochemistry to clearly define NELL2 expression in the hypothalamus. As expected, both mRNA and protein level of NELL2 are strongly expressed in the hypothalamic regions as mentioned above (Fig. 1).

NELL2 affects feeding behavior

To determine the importance of central NELL2 signaling in regulating appetite behavior and energy balance, either the NELL2 AS ODN, its scrambled (NELL2 SCR ODN) sequence, or an ACSF was injected ICV daily into the adult male rat brain as reported previously (Kim et al., 2002) for six consecutive days (from day 0 to day 5, marked in Fig. 2). Daily food intake, water intake and body weight change were monitored during the experimental period (Fig. 2). During the 6 days of injection, rats with the ACSF and the NELL2 SCR ODN showed a similar pattern of daily body weight gain (average body weight gain for ACSF: 5.3 ± 0.7 g/day, and
Fig. 1. NELL2 expression in the adult male rat hypothalamus. (A-C). NELL2 transcripts in coronally sectioned brain tissues from the rostral-to-caudal axis by radioactive ISH. (D) No signal was detected by a sense probe. (E) A relatively high expression of NELL2 protein was found within the PVN. (F) NELL2-ir was also detected within the ARC. (G) Many cells within the dorsomedial (VMHdm) and ventrolateral (VMHvl) parts of the VMH showed a relatively higher expression of NELL2-ir than those in the central (VMHc) part. Abbreviations: BLA, basolateral amygdala; DMH, dorsomedial hypothalamus; HP, hippocampus; VMHa, anterior part of VMH. Scale bar = 2 mm for (A-D), 100 μm for (E-G).

Fig. 2. A cessation of NELL2 production in the hypothalamus affects feeding behavior in rats. NELL2 AS ODN (AS; n = 9), NELL2 SCR ODN (SCR; n = 6) or ACSF (n = 5) were injected ICV daily into the lateral ventricle using a stereotaxically implanted cannula for six consecutive days from day 0 to day 5 (marked by line) as previously reported (Kim et al., 2002), and daily change in body weight (A, D), food intake (B, E), and water intake (C, F) were measured during the experimental period. The NELL2 AS ODN group showed a significant reduction in daily food intake (P < 0.001) followed by a significant loss in daily body weight gain (P < 0.001) without a change in water drinking behavior compared with NELL2 SCR ODN or ACSF animals.
NELL2 Function in Feeding Behavior
Jin Kwon Jeong et al.

for NELL2 SCR ODN: 3.2 ± 0.8 g/day; Figs. 2A and 2D), while rats with the NELL2 AS ODN showed a significant reduction of daily body weight gain (-1.8 ± 1.3 g/day, p<0.001 compared to ACSF or SCR; Figs. 2A and 2D). This attenuation of body weight gain appeared in NELL2 AS ODN group is due to an attenuation of food consumption, as rats in this group ate significantly less than that of the control groups (average of daily food intake for NELL2 AS ODN: 19.9 ± 1.2 g/day, p<0.001 compared to ACSF or SCR, for ACSF: 28.1 ± 1.0 g/day, and for NELL2 SCR ODN: 25.1 ± 0.9 g/day; Figs. 2A and 2D). After the experimental period, daily food intake and body weight gain of the NELL2 AS ODN animals gradually returned to normal range (data not shown). Amount of daily water consumption was not differ between groups (43.3 ± 0.3 ml/day in ACSF, 35.5 ± 3.8 ml/day in NELL2 SCR ODN, and 35.7 ± 3.3 ml/day in NELL2 AS ODN; Figs. 2C and 2F).

As rats with NELL2 AS ODN consumed less food in freely food access condition, we next determined whether blockade of NELL2 production in the hypothalamus also affects hunger-dependent appetite behavior. We used NELL2 SCR ODN only as a control group as rats with the NELL2 SCR ODN and ACSF showed a similar appetite behavior. Using the same experimental set up as above, food from both groups was removed on the second day, and then rats were fasted overnight. Then, food was re-provided at following day and hunger-dependent eating behavior from each group was monitored. Interestingly, rats from both group consumed similar amount of food at early time period after overnight fasting (NELL2 AS ODN vs NELL2 SCR ODN in gram; in 1 h: 4.0 ± 1.0 vs 5.8 ± 0.7, p = 0.19; in 4 h: 6.5 ± 1.5 vs 9.5 ± 1.3, p = 0.19; in 8 h: 13.6 ± 1.8 vs 19.7 ± 2.9, p = 0.16), while rats with NELL2 AS ODN consumed significant less amount of food in 24 h period (17.8 ± 1.1 vs 30.9 ± 3.9 g, p = 0.04), indicating that central NELL2 signaling is not associated with a short-term hunger-dependent eating behavior (Fig. 3).

Another set of animals was used to verify the knock down of NELL2 elicited by NELL2 AS ODN using the same experimental setup described above. Protein was extracted from the mediobasal hypothalamus of both group and western blotting was performed as previously reported (Jeong et al., 2008b; Kim et al., 2002). NELL2 AS ODN efficiently blocks NELL2 expression in the mediobasal hypothalamus by ~65% when compared to NELL2 SCR ODN animals (data not shown).

These data clearly suggest that central NELL2 signaling is, at least in some degree, associated with feeding behavior in rats. If so, we hypothesized that metabolic state might also affect NELL2 expression in the hypothalamus. Therefore, we determined an effect of fasting on the NELL2 gene transcription in the hypothalamus using a RT-PCR analysis of RNA samples from the control and the 48-h fasted animals (Fig. 4). Band densities of the PCR products were normalized by the GAPDH and compared between groups, and found that the expression level of NELL2 mRNA was significantly increased by fasting (P < 0.001 compared to control). Our data all together indicate that NELL2 plays an orexigenic role in rat brain.

Effect of NELL2 on POMC and NPY synthesis

Given that hypothalamic POMC and NPY neurons play a critical role in whole body energy metabolism as well as appetite behavior, and NELL2 is strongly expressed in the ARC, we tested whether NELL2 is associated with POMC and/or NPY expression in the rat ARC. NELL2 is indeed expressed in

![Fig. 3. A comparison of cumulative food intake between the NELL2 AS ODN and NELL2 SCR ODN after 24 h fasting.](image)

![Fig. 4. Fasting promoted NELL2 synthesis in the hypothalamus.](image)

- **Fig. 3.** A comparison of cumulative food intake between the NELL2 AS ODN and NELL2 SCR ODN after 24 h fasting. Food was removed for 24 h for both groups, and cumulative food intake at 1 h, 4 h, 8 h and overnight was measured and compared between the groups. Rats with NELL2 AS ODN (AS, n = 3) showed a similar food intake behavior during early time period at refed compared to the control (SCR, n = 4; p = 0.19 for 1 h, p = 0.19 for 4 h, p = 0.16 for 8 h). However, 24 h food intake in NELL2 AS ODN was significantly reduced compared to the control (p = 0.04).

- **Fig. 4.** Fasting promoted NELL2 synthesis in the hypothalamus. RT-PCR was performed using the hypothalamic total RNA to detect a transcriptional level of NELL2 from control fed (n = 4) and 48-h fasted animals (n = 4). The PCR products for NELL2 were normalized by GAPDH. Hypothalamic NELL2 synthesis was significantly increased in the fasted animals compared with that in control (P < 0.001).
both POMC (Figs. 5A-5C) and NPY cells (Figs. 5D-5F) in the ARC. Using the similar experimental set, the gene expression of POMC and NPY in NELL2 AS ODN and NELL2 SCR ODN was measured. RT-PCR products of POMC and NPY from the medial basal hypothalamus (MBH) were compared between the groups, and we could not find any transcriptional difference of NPY (Fig. 5G) or POMC (Fig. 5H).

DISCUSSION

In our previous studies we developed and successfully applied AS ODN-mediated gene blocking system for the cessation of central NELL2 production in studying NELL2-dependent signal cascades in the hypothalamus using a cDNA expression array (Kim et al., 2002). In that study, we observed that several proteins involving the transport and release of vesicles in neurons, such as synaptophysin and rab7, as well as Ca\(^{2+}\)-dependent intracellular signaling were significantly down-regulated by the NELL2 AS ODN, suggested that NELL2 is participating, at least in some part, in synaptic plasticity in rat brain. We also observed by accident that rats with NELL2 AS ODN showed an attenuated daily body weight gain during the experimental period under normal diet condition (unpublished data). Therefore, we hypothesized and tested here a potential role of central NELL2 in metabolism regulation. Our data clearly shows that hypothalamic NELL2 is associated with appetite behavior with its orexigenic tone.

In general, brain manipulation by drug or virus administration to study central metabolism regulation can be achieved by: 1) cannulation of the lateral (LV), or third ventricle, and 2) stereological injection directly into the target brain region. As CSF is mainly produced around the LV region and circulates throughout the brain ventricular system, administration into the LV is an efficient way to study the chronic effect of a drug on the brain with minimal surgical damage. Compared to the LV system, drug administration into the third ventricle can also be useful when studying an acute effect of a drug in metabolism regulation because many brain regions that are important for energy metabolism and behavior are located around the third ventricle. However, drugs can freely travel within the brain via CSF in both cases and thus could affect multiple brain regions. To overcome this issue, a drug can be directly administered into a target region and requires minimal dosage. Nevertheless, a pipette injector must travel the brain tissue and may damage various brain regions during surgery. This may generate unknown surgical effects. For this study of NELL2 AS ODN in central metabolism regulation, we used the LV system for oligonucleotide delivery and report minimal brain damage.

Unnecessary or excessive food intake results in obesity and causes a variety of metabolic and cardiovascular disorders.

Fig. 5. NELL2 is expressed in both POMC and NPY neuronal populations in the ARC without affecting their gene expression. (A) A cytoplasmic distribution of POMC-ir developed by a green fluorescence was found mostly in the ventromedial part of the ARC through the rostral-to-caudal axis. (B, E) NELL2-ir was developed by a red fluorescence. (C) All POMC immunopositive cells were colocalized with the NELL2-ir. (D) NPY-ir developed by a green fluorescence showed a clear cytoplasmic expression along the rostral-to-caudal axis. (F) All NPY-ir was found within the NELL2 immunopositive cells in this area. Single NELL2-ir was also found in the experiment. Scale bar = 50 \(\mu\)m. (G, H) NPY and POMC transcripts in the MBH were measured by a relative RT-PCR in the NELL2 AS ODN (AS, n = 4) and NELL2 SCR ODN groups (SCR, n = 5), and then compared between the groups. The transcriptional level of NPY (G) and POMC (H) was not different between groups.
and the hypothalamus has long been highlighted for its participation in feeding behavior and whole body metabolism regulation (Frago and Chowen, 2015; Hassouna et al., 2016). Our data show that the expression of NELL2 in the hypothalamus is directly associated with the metabolic state, as fasting enhanced NELL2 synthesis in this brain region. Furthermore, rats lacking NELL2 in the hypothalamus developed a lean phenotype and reduced food consumption, which clearly demonstrates a role for NELL2 in appetite behavior as an orexin in the brain. Rats with NELL2 AS ODN possess an integrative system for water drinking behavior as well as a short-term hunger-dependent feeding behavior. However, NELL2 AS ODN induced a significant decrease in 24 h food intake after fasting. This is in line with our behavior data from the ad libitum condition, and provides clear evidence that central NELL2 may play a critical role in controlling unnecessary food intake. Further studies testing NELL2 in diverse eating behaviors, including food preference, addiction, compulsive eating, as well as high fat diet-induced appetite behavior are necessary to clearly determine central NELL2 function in metabolic behavior.

NELL2 is a glycoprotein containing multifunctional domains such as a protein kinase C-interacting domain, von Willebrand factor C motifs, a thrombospondin (TSP)-1-like main such as a protein kinase C-interacting domain, von NELL2 function in metabolic behavior. appetite behavior are necessary to clearly determine central NELL2 in diverse eating behaviors, including food preference, addiction, compulsive eating, as well as high fat diet-induced appetite behavior and body weight (Czaja, 1984), suggesting some degree of discrepancy exist for sex steroid dependent metabolism regulation. Anyhow, central NELL2 may play a role to mediate sex steroid-dependent feeding behavior and metabolism regulation.

In summary, we report here that a neural tissue-enriched multifunctional protein, NELL2 is a regulatory component of feeding behavior, possibly through a modulation of neuronal activity in the hypothalamus. Further investigation into the effect of NELL2 on synaptic plasticity of the hypothalamic neurons in metabolism regulation is necessary.

ACKNOWLEDGMENTS

This work was supported by Mid-career Researcher Program
REFERENCES

NELL2 Function in Feeding Behavior
Jin Kwon Jeong et al.