9-8-2015

TNF-α-Induced microRNAs Control Dystrophin Expression in Becker Muscular Dystrophy.

Alyson A. Fiorillo

Christopher R. Heier
George Washington University

James S. Novak

Christopher B. Tully

Kristy J. Brown
George Washington University

See next page for additional authors

Follow this and additional works at: https://hsrc.himmelfarb.gwu.edu/smhs_intsysbio_facpubs

Part of the Amino Acids, Peptides, and Proteins Commons, Genetics and Genomics Commons, and the Systems Biology Commons

Recommended Citation

This Journal Article is brought to you for free and open access by the Genomics and Precision Medicine at Health Sciences Research Commons. It has been accepted for inclusion in Genomics and Precision Medicine Faculty Publications by an authorized administrator of Health Sciences Research Commons. For more information, please contact hsrc@gwu.edu.
Authors
Alyson A. Fiorillo, Christopher R. Heier, James S. Novak, Christopher B. Tully, Kristy J. Brown, Kitipong Uaesoontrachoon, Maria C. Vila, Peter P. Ngheim, Luca Bello, Joe N. Kornegay, Corrado Angelini, Terence A. Partridge, Kanneboyina Nagaraju, and Eric P. Hoffman

This journal article is available at Health Sciences Research Commons: https://hsrchimmelfarb.gwu.edu/smhs_intsysbio_facpubs/
TNF-α-Induced microRNAs Control Dystrophin Expression in Becker Muscular Dystrophy

Graphical Abstract

Highlights

- miRNAs in muscle microenvironments cause variable dystrophin in muscular dystrophy
- miRNAs are elevated in dystrophic myofibers and increase with disease severity
- Inflammatory cytokines induce miRNAs, and anti-inflammatory block their expression
- miRNAs provide a precision medicine target in dystrophy and exon skipping

In Brief

Fiorillo et al. find that miRNAs in muscle promote variable dystrophin levels in muscular dystrophies. Dystrophin-targeting miRNAs reduce dystrophin and increase with disease severity. Innate inflammatory pathways induce miRNAs, whereas NFκB inhibition dampens induction. These events initiate a self-sustaining feedback loop, exacerbating disease progression. Thus, miRNA inhibition in dystrophic muscle could provide therapeutic targets.

Authors

Alyson A. Fiorillo, Christopher R. Heier, James S. Novak, ..., Terence A. Partridge, Kanneboyina Nagaraju, Eric P. Hoffman

Correspondence
ehoffman@childrensnational.org

Fiorillo et al., 2015, Cell Reports 12, 1678–1690
September 8, 2015 ©2015 The Authors
http://dx.doi.org/10.1016/j.celrep.2015.07.066
TNF-α-Induced microRNAs Control Dystrophin Expression in Becker Muscular Dystrophy

Alyson A. Fiorillo,1 Christopher R. Heier,1 James S. Novak,1 Christopher B. Tully,1 Kristy J. Brown,1,2 Kitipong Uaesoontrachoon,1 Maria C. Vila,1 Peter P. Ngheim,1 Luca Bello,1,4 Joe N. Kornegay,1 Corrado Angelini,4 Terence A. Partridge,1,2 Kanneboyina Nagaraju,1,2 and Eric P. Hoffman1,2,*

1Center for Genetic Medicine Research, Children’s National Medical Center, Washington, DC 20010, USA
2Department of Integrative Systems Biology, George Washington University School of Medicine and Health Sciences, Washington, DC 20010, USA
3Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77845, USA
4Fondazione Ospedale S. Camillo, IRCCS, Lido Venice 30126, Italy
*Correspondence: ehoffman@childrensnational.org
http://dx.doi.org/10.1016/j.celrep.2015.07.066
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

SUMMARY

The amount and distribution of dystrophin protein in myofibers and muscle is highly variable in Becker muscular dystrophy and in exon-skipping trials for Duchenne muscular dystrophy. Here, we investigate a molecular basis for this variability. In muscle from Becker patients sharing the same exon 45–47 in-frame deletion, dystrophin levels negatively correlate with microRNAs predicted to target dystrophin. Seven microRNAs inhibit dystrophin expression in vitro, and three are validated in vivo (miR-146b/miR-374a/miR-31). microRNAs are expressed in dystrophic myofibers and increase with age and disease severity. In exon-skipping-treated mdx mice, microRNAs are significantly higher in muscles with low dystrophin rescue. TNF-α increases microRNA levels in vitro whereas NFκB inhibition blocks this in vitro and in vivo. Collectively, these data show that microRNAs contribute to variable dystrophin levels in muscular dystrophy. Our findings suggest a model where chronic inflammation in distinct microenvironments induces pathological microRNAs, initiating a self-sustaining feedback loop that exacerbates disease progression.

INTRODUCTION

Duchenne muscular dystrophy (DMD) is caused by mutations in the dystrophin (DMD) gene that disrupt the open reading frame and prevent its protein translation (Chamberlain et al., 1987; Hoffman et al., 1987a, 1987b, 1988). Becker muscular dystrophy (BMD) is less severe and results from DMD mutations that preserve the reading frame. BMD-causing mutations lead to translation of a truncated dystrophin, which is expressed at lower and more variable levels than full-length dystrophin (Beggs et al., 1991; Hoffman et al., 1989; Kesari et al., 2008).

Dystrophin content in BMD muscle varies within myofibers, between adjacent fibers, and between different patients, even when the same deletion mutation is shared. Dystrophin levels partly correlate with disease severity. Compared to normal muscle, dystrophin levels of ~3%–15% are seen in severe BMD, whereas >20% are associated with milder disease (Hoffman et al., 1988, 1989). BMD genotype-phenotype associations have previously been investigated to determine whether there is a mutation-specific basis for inter-patient variation in dystrophin levels (Beggs et al., 1991; Cirak et al., 2011; Kesari et al., 2008, 2014). These studies show that, whereas greater disease severity is seen with amino- and carboxyl-terminal deletions, there is high variation in both dystrophin expression and clinical symptoms in patients with mutations in the central rod domain, even when the same exons are deleted.

The most common in-frame BMD deletion is of exons 45–47 (BMD Δ45–47), which codes for 150 amino acids in the central rod domain. We and others have reported variable dystrophin in BMD Δ45–47 muscle (5%–80%; Kesari et al., 2008; van den Bergen et al., 2014). These studies found little correlation between dystrophin amount and clinical phenotype; however, BMD patients with <10% dystrophin exhibited a more severe clinical picture (Kesari et al., 2008; van den Bergen et al., 2014). BMD Δ45–47 patients should, in theory, show similar gene expression, comparable mRNA stability, and produce an identical truncated protein with equivalent levels/stability. In contrast, the observed dystrophin content in these muscles varied significantly, suggesting a mechanism of post-transcriptional dystrophin regulation.

A promising approach to induce de novo dystrophin in DMD muscle is exon skipping, where antisense oligonucleotides drive alternative splicing to produce a BMD-like dystrophin protein product. Although extensive pre-clinical studies have provided proof of principle of this approach, dystrophin levels varied within and between muscle groups (Yokota et al., 2009, 2012). Two clinical trials have also observed uneven dystrophin rescue (Cirak et al., 2011; Mendell et al., 2013).

We hypothesized that molecular mechanisms causing variable dystrophin protein levels in BMD are shared with those causing...
variability in exon skipping. To prevent introduction of confounding variables (differences in dystrophin transcript and protein stability), we utilized BMD muscles from patients with the same dystrophin Δ45–47 exon deletion as the initial discovery data set. Our preliminary data showed that dystrophin mRNA levels are maintained in BMD Δ45–47 muscle whereas dystrophin protein levels are variable. Given this, we investigated the role of microRNAs (miRNAs) in regulating post-transcriptional dystrophin levels.

RESULTS

Variable Dystrophin in Δ45–47 BMD Patient Muscles Does Not Correlate with Transcript Levels

We carried out studies on ten BMD patient biopsies harboring an exon 45–47 deletion mutation (BMD Δ45–47; Table S1). Dystrophin western blot was performed with patient muscle and a standard curve of healthy muscle (“normal”) showing a dynamic linear range (Figures 1A and S1A). Normalized dystrophin was variable, ranging from 8% to 63% (Figure 1B).

For subsequent studies, samples were stratified based on dystrophin levels. Groups were defined as “high,” corresponding to >20% dystrophin, and “low,” corresponding to <20% dystrophin (Figure S1B) based on reports showing dystrophin levels greater than 20% are needed to fully protect muscle fibers (van Putten et al., 2012). Dystrophin mRNA measured by qRT-PCR showed no correlation with dystrophin protein (Figures 1B and S1C). Neither RT-PCR using primers flanking exons 44 and 48 nor qRT-PCR using custom probes against alternatively spliced transcripts showed evidence of alternative splicing (data not shown).

Predicted miRNA Binding Sites in the Dystrophin 3' UTR Correspond to miRNAs Elevated in Dystrophic Muscle

Given the lack of correlation between dystrophin mRNA and protein levels, we hypothesized miRNAs may post-transcriptionally regulate dystrophin. Seventy-eight potential miRNA-binding sites for 67 distinct miRNAs were identified in evolutionarily conserved regions of the 2.7-kb dystrophin 3' UTR (Figure S1D). miRNA profiling was performed with BMD Δ45–47 (n = 10), normal (n = 6), and DMD muscle biopsies (n = 5) with TaqMan TLD Arrays containing probes for 51/67 miRNAs predicted to bind the dystrophin 3' UTR. In BMD low samples, 14 miRNAs showed significant upregulation (1.5-fold to 17-fold; Figure 1C). In contrast, only five miRNAs were elevated in BMD high samples (Figure 1C). In an additional analysis, the number of elevated miRNAs (≤1.5-fold) in each BMD sample showed a modest inverse correlation when plotted as a continuous variable against dystrophin protein (Figure 1D). Similarly, individual miRNA levels (miR-146b, miR-374a, and miR-382 shown as examples; Figure 1E) showed inverse correlations with dystrophin. Together, these data show dystrophin-targeting miRNAs (herein referred to as DTMs) are inversely related to dystrophin levels in BMD Δ45–47 muscle.

In an additional analysis, we found five DTMs elevated (3.6- to 25.1-fold) in both DMD and BMD low muscle (miR-146-5p, miR-382, mir-758, miR-214, and miR-494; Figure S1E). Dystrophin-targeting miR-31 was also upregulated in DMD muscle (Figure S1E).

DTMs Inhibit Dystrophin Protein Translation In Vitro

To determine whether DTMs modulate dystrophin protein levels, we constructed a reporter containing the 2.7-kb dystrophin 3' UTR downstream of Renilla reniformis luciferase; this reporter co-expressed Firefly luciferase from a separate promoter, thus providing a robust internal transfection control (Figure 2A). This reporter was co-transfected into C2C12 myoblasts along with one of 14 miRNAs upregulated in BMD low muscle (Table S2). Seven miRNAs inhibited dystrophin expression (miR-31, miR-146a, miR-146b-5p, miR-223, miR-320a, miR-374a, and miR-382), two enhanced expression (miR-195/miR-758), and five had no effect (Figure 2B).

We tested the most potent DTMs in human myotubes in vitro. Immortalized human myoblasts were transfected with the indicated miRNAs or control and differentiated into myotubes. Western blot showed all miRNAs reduced dystrophin to <20% of normal levels (Figure 2C).

Using miRNAs showing the strongest inhibition (miR-146b, miR-31, and miR-374a), we determined whether miRNAs could have an additive or synergistic effect in combination. Here, we created a miRNA mix (“Biomix”) composed of miRNA levels that approximated expression in dystrophic muscle biopsies based on Cq levels from miRNA arrays (70% miR-146b, 25% miR-374a, and 5% miR-31; Figure 2D; Table S2). At 1 nM, the Biomix inhibited reporter activity more than any single miRNA at the same concentration (Figure 2D), indicating DTMs may work in concert to inhibit dystrophin.

To determine the specificity of miRNA-mediated dystrophin inhibition, we mutated specific miRNA response elements (MREs) in the 3' UTR reporter (Figure 2E). Mutants were made for each miRNA in the Biomix, including disruption of one miR-374a MRE. We anticipated, however, this mutant would have little or no effect due to the other two MREs located within the dystrophin 3' UTR. Results showed miR-146a/b MRE mutation attenuated inhibition both of miR-146b and miR-146a and miR-31 MRE mutation alleviated miR-31-specific inhibition (Figure 2F). miR-374a MRE mutation, however, had no effect on miR-374a-mediated inhibition (Figure 2F), likely due to the two functional miR-374a MREs remaining.

DTMs Regulate Dystrophin In Vivo

Next, we tested the effects of DTMs in wild-type mice in vivo. The Biomix (miRNA) was injected into the right tibialis anterior (TA) of 6-week-old C57BL10/J mice; the left TA received scrambled control (CTRL) (Table S2). Seven days post-injection, muscles were harvested and analyzed for miRNA and dystrophin. qRT-PCR showed successful intramuscular delivery of exogenous miRNAs (Figure S2A). At the injection site (indicated by tattoo dye), immunofluorescence showed reduced dystrophin in miRNA, but not in CTRL-injected mice (Figure 3A). qRT-PCR showed dystrophin mRNA was not affected (Figure S2B), consistent with translation inhibition as the primary mechanism of action.

In the previous experiment, miRNA delivery was restricted to a small region surrounding the injection site. Thus, we performed a second experiment where muscles were injured via notexin prior to miRNA injection. This approach also had the effect of removing endogenous dystrophin in mature myofibers, enabling us to
determine whether injected miRNAs inhibit de novo dystrophin during myogenic regeneration (half-life of dystrophin in mature myofibers is ~2 months; Wu et al., 2012). The TA muscles of 6-week-old C57BL/10ScSnJ wild-type mice were injected with 100 μg notexin. Four days after the initial injury, mice were injected with the miRNA Biomix or CTRL. Mice were harvested
DTMs in Dystrophic Muscle Increase with Age
Golden retriever muscle dystrophy dogs (GRMD) exhibit variable histopathology, similar to DMD boys (Cooper et al., 1988; Shimatsu et al., 2005; Smith et al., 2011; Valentine et al., 1988). Given this, we assessed DTMs in GRMD muscle. We first measured DTMs in 6-month-old GRMD vastus lateralis (VL) as it is histologically severe and similar to the VL of DMD patients. miR-146b, miR-146a, and miR-223 were elevated in the GRMD VL (n = 9; 50-fold, 3-fold, and 8-fold, respectively) as compared to wild-type (Figure 4A; Table S3 for TaqMan assay information). DTMs were also measured in GRMD cranial sartorius (CS), which is mildly affected in both dogs and humans (Calabia-Linares et al., 2011; Lemaire et al., 1988; Nghiem et al., 2013). miR-146b, miR-146a, miR-223, and miR-382 were elevated (n = 9; 25-fold, 1.3-fold, 2.5-fold, and 4-fold) in GRMD CS, albeit at slightly lower levels as compared to the GRMD VL (Figure S3A). Supporting this, DTMs were similarly elevated in mdx gastrocnemius (Figure S3B).

Next, we determined whether DTMs correspond with dystrophic disease severity, utilizing VLs from 1- or 6-month-old GRMD and wild-type dogs. Three miRNAs (miR-146b/miR-146a/miR-223) increased with age (n = 6; Figure 4B). Separately, we performed a smaller longitudinal analysis using VL muscle taken serially from GRMD (n = 4) or wild-type (n = 4) dogs over a period of 6 months. miR-146b, miR-146a, and miR-223 increased in 100% of GRMD dogs from 1 to 6 months whereas, in wild-type, these miRNAs either decreased or showed a smaller change (Figure S3C). To further demonstrate that DTMs are associated with disease progression, we analyzed TAs of 12-day- and 8-week-old mdx mice. We observed marked increases in miR-223 and miR-31 correlating with age (Figure 4C). miR-146a/miR-146b were equally elevated in both ages of mdx mice, but this is likely due to early pre-symptomatic activation of NFκB as previously observed in newborn DMD patients (Chen et al., 2005). Consistent with previous studies (Hamrick et al., 2010), when DTMs were assessed in wild-type mice, only miR-382 levels were significantly altered (decreased to ~10% in older mice); however, the change was opposite to the direction of the mdx genotype effect (Figure S3D).

To see whether DTMs were expressed in muscle cells, mature myofibers were enzymatically dissociated from the extensor digitorum longus muscle (EDL) of 8-week-old mdx and wild-type mice. miR-146b, miR-146a, miR-31, and miR-223 were elevated in mdx whole EDL (Figure 4D) and in purified fibers (Figure 4E). In mdx myotubes in vitro, four DTMs increased during differentiation (Figure S3E), suggesting a role in regeneration. Together, these data show miRNAs become increasingly elevated in older dystrophic muscle and DTMs are not associated with the normal aging process in muscle.

DTMs Reduce Exon Skipping Success
We tested whether DTMs contribute to variable dystrophin rescue observed in exon skipping. Four-week-old mdx mice were given a single 800 mg/kg intravenous injection of exon-23-targeting morpholino and were sacrificed after 1 month. From one mouse, adjacent sections of TA, gastrocnemius, and diaphragm muscles were analyzed for dystrophin protein by mass spectrometry (Brown et al., 2012) and for DTMs by qRT-PCR. We detected high dystrophin levels in the TA (~40%) whereas diaphragm and gastrocnemius showed lower levels (~5%; Figure 5A). Conversely, DTMs were low in the TA (miR-146a/miR-374a/miR-223/miR-320a/miR-382) and high in the gastrocnemius and diaphragm muscles (Figure 5A).

To determine whether DTMs contributed to intra-animal exon skipping variability, two additional morpholino-injected mice were studied. DTMs in mdx triceps, gastrocnemius, and TA were measured (n = 9 muscles tested; seven miRNA measures/muscle). Muscles were stratified into miRNA low, moderate, or high groups and plotted against % dystrophin. We found the miRNA low group showed quite high dystrophin whereas the high group had lower dystrophin levels (Figure 5B). These data suggest DTMs may contribute to inter- and intra-subject variability of dystrophin rescue in exon skipping studies.

DTMs Are Induced by Pro-inflammatory TNF-α in Myogenic Cells
Two DTMs are induced by NFκB; miR-146a in THP-1 cells (Taganov et al., 2006) and miR-223 in T cells (Kumar et al., 2014). We determined whether DTMs could be induced by pro-inflammatory stimuli in mdx H2K myotubes. TNF-α treatment increased miR-146a and miR-223 (Figure 6A) whereas pre-treatment with NFκB-inhibiting anti-inflammatory drugs (prednisolone and VBP15; Heier et al., 2013) suppressed induction (Figure 6A). Both drugs also decreased miR-146b and miR-382 levels, with VBP15 showing greater effects (Figure 6A).

To investigate anti-inflammatory effects in vivo, miRNA levels were measured in archival samples from prednisolone or VBP15-treated mdx mice. Mice were 6-month-old mdx or age-matched wild-type treated for 4 months (Heier et al., 2013). Both drugs significantly reduced diaphragm miR-146a and 146b levels and slightly reduced miR-223 (Figure 6B).

Archival samples from gastrocnemius of 8-week-old prednisolone or VBP15-treated mdx mice were additionally obtained from a separate study (Heier et al., 2013). Here, both prednisone and VBP15 reduced miR-146a and miR-223 in comparison to untreated mice whereas miR-382 was increased in prednisolone, but not in VBP15-treated mice (Figure 6C). We also assessed BMD muscle biopsies (VL; n = 9) with “mild” or “severe” histopathology (Table S4; Figure 6D). In this cohort, five of seven DTMs were elevated as compared to healthy muscle (Figure S4). Interestingly, only those DTMs associated with the NFκB pathway (miR-146a, miR-223, and miR-382) were elevated in severe versus mild BMD muscle (Figure 6D). Collectively, these data show NFκB regulates a subset of DTMs and its inhibition reduces pathological miRNAs in muscle.

DISCUSSION
Here, we utilize muscle from BMD patients harboring an exon 45–47 to model dystrophin protein variability observed in exon skipping studies. This enabled us to examine dystrophin...
Figure 2. miRNAs Inhibit Dystrophin Protein Translation In Vitro

(A) Schematic of dystrophin 3' UTR reporter. The human dystrophin 3' UTR was cloned into the 3' end of a Renilla reporter gene (psi-CHECK2 vector). The psi-CHECK2 vector co-expresses Firefly luciferase and thus provided an internal transfection control.

(B) miRNAs inhibit dystrophin 3' UTR reporter activity. Individually, 14 dystrophin mRNA-targeting miRNAs were co-transfected with reporter into cells; percent inhibition is provided in graph (n = 4 replicates; ANOVA; **p < 0.01; ***p < 0.001; ****p < 0.0001 versus negative [C0] control).

(C) Western blot of healthy human myotubes transfected with 50 nM of indicated miRNAs. Tubulin (loading control) and densitometry values (% CTRL) are provided.

(D) miRNAs inhibit dystrophin 3' UTR reporter activity. Individually, 14 dystrophin mRNA-targeting miRNAs were co-transfected with reporter into cells; percent inhibition is provided in graph (n = 4 replicates; ANOVA; **p < 0.01; ***p < 0.001; ****p < 0.0001 versus negative [C0] control).

(E) bp # (from start of UTR):

- Dystrophin 3'UTR: 185, 316, 986, 1267, 2887
- miR-374a: 316
- miR-31: 986
- mirR-374a/b: 1267
- mirR-31: 2887

(F) % Change of dystrophin 3'UTR and Mutant 3'UTR.

(legend continued on next page)
regulation without confounding variables, such as protein stability, attributed to a specific DMD exon deletion (van den Bergen et al., 2014). Using this method, we provide insight into the molecular mechanisms contributing to variable dystrophin. We identify miRNAs that regulate dystrophin and are induced by inflammation, a feature of dystrophic muscle. Our findings suggest a model for dystrophin variability in muscle and for variable clinical progression of BMD patients sharing the same exon deletion (refer to Graphical Abstract). As dystrophic myofibers remodel, they induce a pro-inflammatory response in distinct microenvironments, triggering immune cells to release inflammatory cytokines, such as TNF-α. This activates NFκB signaling in myofibers, which induces DTM transcription (miR-146a and miR-223), which, in turn, inhibits dystrophin translation. These events could further exacerbate aberrant signaling that occurs in dystrophic myofibers and initiate a positive feedback loop that would (1) lead to further increases in DTMs and (2) would result in decreased, yet variable, dystrophin in individual fibers and muscle groups. Chronic activation of these processes would result in variable clinical phenotypes that would presumably worsen with age and disease progression. Inhibition of DTMs could theoretically increase dystrophin in BMD and thus provides a potential therapeutic target.

Our findings contribute to the knowledge initiated by a few key bodies of work. One report showed miR-31 is associated with muscle regeneration and miR-223 is associated with inflammatory infiltration following muscle injury (Greco et al., 2009); another showed proof of principle that miR-31 can inhibit DTMs show synergistic inhibition. The three most potent DTMs (1 nM, miR-146b, miR-374a, and miR-31) were transfected into cells individually or in combination (referred to as Biomix); results are reported as percent inhibition (n = 4 replicates; ANOVA; **p < 0.01; ***p < 0.001; ****p < 0.0001 versus negative control).

(E) Schematic shows base pairing of miRNAs with dystrophin 3’ UTR, called miRNA recognition elements or MREs. MRE mutants were constructed as shown; four or five nucleotide substitutions were made to reporter (mutated nucleotides in red). For miR-146a/b sequence, x = c, y = a for miR-146b and x = t, y = g for miR-146a (blue). Mutagenesis was performed on one of three miR-374a MREs; however, this mutant was anticipated to have little effect on reporter expression due to two non-mutated miR-347a MREs remaining (gray).

(F) MRE mutagenesis reduces dystrophin inhibition. Fifty-nanomolar indicated miRNAs were co-transfected into cells along with dystrophin wild-type (white bars) or a MRE mutant 3’ UTR reporter (black bars). Mutated MRE construct matches transfected miRNA for each condition as indicated (n = 4 replicates; Student’s t test for wild-type versus mutant; #p < 0.1; *p < 0.05; **p < 0.01).

Refer also to Table S2. In all panels, error bars represent ± SEM.
Figure 4. DTMs Are Elevated in Dystrophic Muscle and Increase with Age

(A) miRNAs are elevated in dystrophic dogs. Levels of miR-146b, miR-146a, and miR-223 in the vastus lateralis (VL) muscle of 6-month-old GRMD (n = 9) compared to aged matched wild-type dogs are shown (n = 3; Student’s one tailed t test; #p < 0.1; p < 0.05; **p < 0.01; ***p < 0.001).

(B) DTMs increase with disease progression. Levels of miR-146a, miR-146b, and miR-223 in VL muscle biopsies of 1- and 6-month-old GRMD dogs are shown (n = 6/group).

(legend continued on next page)
Dystrophin in vitro (Cacchiarelli et al., 2011). Furthermore, previous studies of serum miRNAs show the extent of miRNA dysregulation is linked to age and disease progression (Jeanson-Leh et al., 2014; Vignier et al., 2013).

DMD muscle shows variable histopathology that is, in part, due to asynchronous regeneration (Dadgar et al., 2014), which creates muscle microenvironments with various degrees of pro-inflammatory and pro-fibrotic networks. Our proposed model suggests inflammatory microenvironments influence dystrophin via DTM induction. Supporting this, previous reports show only a fraction of healthy donor myoblasts or bone-marrow-derived cells produce dystrophin in DMD muscle, perhaps due to DTMs within the muscle microenvironment (Gussoni et al., 1997; Wernig et al., 2005). Additionally, here we show an inverse relationship between DTMs and dystrophin rescue in exon-skipping-treated mdx.

Given this, DTM inhibition may improve exon skipping success. Evidence for this includes an in vitro study where cotransfection of an exon-skipping lentiviral construct (U1 snRNA antisense) and a locked nucleic acid (LNA) to inhibit miR-31 resulted in increased dystrophin (Cacchiarelli et al., 2011). Previously, our lab investigated mosaic female DMD carriers with different proportions of non-mutated dystrophin (Pegoraro et al., 1995). In these patients, some dystrophin-competent myonuclei failed to make dystrophin, specifically in older patients. Here, we show DTMs increase with age in GRMD and mdx muscle. This suggests age-related increases in miRNAs may contribute to the previously described failure of dystrophin-competent nuclei to produce dystrophin.

miRNA profiling in the aging heart has identified 65 miRNAs that are differentially expressed (Zhang et al., 2012). This list included increases in miR-146a, miR-146b, miR-223, and miR-374a, which we have reported here. A separate study showed the aging heart had reduced dystrophin levels (Townsend et al., 2011), suggesting a link between miRNAs and decreased cardiac dystrophin during aging.

Most miRNAs described here do not exhibit distinct tissue specificity. miR-31 is higher in normal human GI and epithelial tissues (Liang et al., 2007), and miR-146 is elevated in the murine heart (Lagos-Quintana et al., 2002). Other reports detect DTMs in skeletal muscle at different phases of muscle regeneration.
We found elevated DTMs in purified mdx myofibers, suggesting muscle-specific miRNA expression. We also show TNF-α induces miR-146a and miR-223 in mdx myotubes, whereas NFκB inhibition attenuates induction. Although DTMs described here are not classically defined as myomiRs, previous reports show non-muscle-specific miRNAs are also imperative for proper muscle function (Novák et al., 2013). One report shows miR-146b, miR-31, and miR-223, known as dystromiRs, are differentially expressed in dystrophic muscle and have been shown to play a role in myogenesis and muscle regeneration (Roberts et al., 2012). Other reports show miR-146b-5p promotes myogenic differentiation (Khanna et al., 2014; Kuang et al., 2009) and miR-31 and miR-223 are induced in ischemia-damaged myofibers (Greco et al., 2009). Supporting
this, here we show DTM induction during myoblast differentiation. Together, these data suggest DTMs play a role in normal muscle regeneration.

Inflammatory cells could contribute to DTM induction in dystrophic muscle. In this scenario, “crosstalk” between immune cells and myofibers could be mediated by horizontal transfer of miRNAs by exosomes or microvesicles (Ismail et al., 2013; Kosaka et al., 2010; Mittelbrunn et al., 2011; Skog et al., 2008; Valadi et al., 2007; Zhang et al., 2010). Although there are knowledge gaps in the mechanism of RNA transfer from immune to other cells, it is plausible that miRNAs could behave similar to endocrine peptide hormones, where distant cytokines induce a positive autocrine/paracrine feedback loop (Clevenger and Plank, 1997).

We show TNF-α-mediated NFκB activation induces DTM expression in dystrophic myotubes. This supports previous studies that identified NFκB consensus elements in miR-146a/miR-223 promoters (Kumar et al., 2014; Taganov et al., 2006). In treating DMD, patients undergoing exon-skipping therapy will likely be co-administered glucocorticoids. One inclusion criteria for recent exon-skipping trials was >24 weeks of glucocorticoid treatment (Mendell et al., 2013). Glucocorticoids globally affect inflammation and gene transcription, which could impact DTM expression. Here, we show prednisolone and VBP15 reduce DTMs miR-146a, miR-146b, and miR-223, suggesting these drugs could increase dystrophin if combined with exon skipping. Prednisolone also increased miR-382, whereas VBP15 had no effect. This difference could be explained by the ability of VBP15 to dissociate glucocorticoid-receptor-mediated transactivation activity. These data suggest anti-inflammatory compounds such as prednisolone and particularly VBP15 could enhance exon skipping success (Heier et al., 2013).

It is conceivable that DTMs are involved in other muscle disorders where NFκB signaling is enhanced. Interestingly, a previous report showed elevated DTMs in a wide variety of muscle disorders such as myositis, Miyoshi myopathy, and limb girdle muscular dystrophy (Eisenberg et al., 2007). Thus, DTMs may be a common signature of muscle diseases where chronic inflammation is present and could potentially provide therapeutic targets for a broader range of muscle disorders.

Consistent with our findings, a previous study showed that miR-31 represses dystrophin through the 3’ UTR (Cacchiarelli et al., 2011), results that were validated here. In dystrophic muscles, we detected miR-31 at lower absolute levels than other DTMs. miR-31 did not increase in GRMD muscle and was not associated with exon skipping success in mdx mice. Thus, whereas miR-31 was one of seven DTMs characterized, others appeared more relevant to both disease progression and therapeutics.

Our work here elicits questions regarding the role of the dystrophin 3’ UTR in normal muscle, given the abundance of miRNA binding sites and the high conservation of this region. One model revolves around remodeling of myofibers in healthy muscle. Myofibers are one of the more morphologically adaptable cells, and activity can result in rapid cell hypertrophy or atrophy. The normal function of dystrophin is to provide a rigid membrane cytoskeleton and robust connections between intracellular contracting myofibrils and the extracellular matrix. However, myofibers need to transiently destabilize the membrane cytoskeleton to remodel (Kee et al., 2004). Given previous reports showing that lengthening muscle contractions result in reduced dystrophin (Komulainen et al., 1998), it is possible that the “normal” role of DTMs is to enable transient dystrophin reduction in remodeling myofibers.

Here, we show proof of principle that dystrophin is reduced by inflammation-induced miRNAs that are elevated in dystrophic muscle. Our data provide insight into phenotypic discrepancies observed in BMD and variable success observed in DMD exon-skipping clinical trials. We show NFκB inhibition, in addition to quelling inflammation, may provide the added benefit of increasing de novo dystrophin production. This work could potentially provide an avenue for molecular-based therapy for BMD patients and an adjuvant therapy in DMD to increase exon skipping effectiveness.

EXPERIMENTAL PROCEDURES

Muscle Biopsies
All details are provided in the Supplemental Experimental Procedures.

Western Blot Analysis
Muscle protein was extracted from cryosections with lysis buffer containing 75 mM Tris-HCl (pH 6.8), 10% SDS, 10 mM EDTA, and 5% 2-mercaptoethanol as described (Yokota et al., 2009). Additional detail is in the Supplemental Experimental Procedures.

TaqMan miRNA Low-Density Arrays
RNA was extracted from 20 mg muscle (ten BMD; five DMD; six control) with TRIzol (Life Technologies). miRNA array was performed with TaqMan low-density Array A (TaqMan Array Human miRNA, v3.0A; 382 miRNA; Applied Biosystems; Life Technologies). Single-stranded cDNA was synthesized from 100 ng RNA using TaqMan MiRNA Reverse Trancription Kit (Life Technologies) and RNA-specific stem-looped Megaplex RT Primers, Human Pool A v2.1 (Life Technologies). Additional details are in the Supplemental Experimental Procedures.

qRT-PCR Assays

mRNA
Total RNA was extracted from muscle biopsies (~20 mg) using TRIzol (Life Technologies) according to manufacturer’s instructions with isopropanol precipitation performed at -20°C overnight. Total RNA was reverse-transcribed to cDNA using iScript cDNA synthesis kit (Quanta) and then analyzed using human-specific TaqMan probes (Life Technologies) and the 7900HT Fast Real-Time PCR system. For TaqMan gene expression assay IDs, refer to Table S3. Muscle-specific gene expression was normalized to titin (TTN). Results were calculated using the 2−ΔΔCq method (Livak and Schmittgen, 2001). Mous gene expression was quantified in the same manner as above, with mouse-specific TaqMan probes (Life Technologies; refer to Table S3).

miRNA
Human miRNAs were quantified using Taqman miRNA low-density array (TLDa) assays as above from RNA extracted from ~20 mg of muscle. Mouse and dog miRNAs were quantified (20 mg muscle) using TaqMan assays (Life Technologies) according to manufacturer’s protocol. Table S4 lists all miRNA assay IDs.

Luciferase Assays

C2C12 myoblasts (3’ UTR assay) or HEK293 cells (mutagenesis assay) were seeded in 24-well plates at a density of 4 × 10^4 or 8 × 10^4 cells/well and co-transfected 24 hr later with 200 ng dystrophin 3’ UTR or mutant reporter
and with 50 nM miRNA mimics (Life Technologies) with Lipofectamine 2000. Cells were harvested 24 hr later according to Dual-Glow Luciferase Reporter Assay System protocol (Promega). Results were normalized to an internal control driven by a separate promoter in the same reporter. Results are reported as percent change by setting negative control values to 0%. Biomix details are in the Supplemental Experimental Procedures.

miRNA Transfections in Immortalized Human Myoblasts

Immortalized human myoblasts were seeded on 0.4% gelatin in 6-well plates (2.5 x 10^5 cells/well) with skeletal muscle proliferation media. Cells were co-transfected with 50 nM of indicated miRNA mimics using Lipofectamine 2000. Cells were differentiated with 2% horse serum for 5 days and then lysed as described (Yokota et al., 2009). miRNA delivery was verified via Cy3-labeled CTRL (Life Technologies; AM17120).

Immunofluorescence

Seven-micrometer sections were cut from mouse TAs. Sections were air dried, hydrated in PBS, and stained for dystrophin as reported (Lu et al., 2000). Image J software (NIH) was used for analysis; average pixel intensity was measured after images were set to a 70-pixel threshold and converted to a binary image. Full details are in the Supplemental Experimental Procedures.

TNF-α Treatment of mdx H2K Myotubes

H2K myoblasts were differentiated into myotubes in 12-well plates (1.25 x 10^5 cells/well) with Matrigel at 37°C. After 4 days of differentiation, myotubes were treated with 1 μM VBP15 or prednisolone for 6 hr and then induced with TNF-α (10 ng/ml) for 24 hr.

Dystrophin Quantification with Mass Spectrometry

Dystrophin protein was quantified using 50 μg of total protein mixed with 25 μg of SILAM internal standard as reported (Brown et al., 2012). Full details are in the Supplemental Experimental Procedures.

Animal Studies

All animal studies were done in adherence to the NIH Guide for the Care and Use of Laboratory Animals, and experiments were conducted within IACUC guidelines under approved protocols. All studies were reviewed and approved by the Institutional Animal Care and Use Committee of Children’s National Medical Center. Mice were obtained from The Jackson Laboratory.

Single Myofiber Isolation

Single myofibers were prepared from the EDL muscle of 8-week-old mdx (C57BL/10ScSn-Dmd<>/J) and wild-type (C57BL/10ScSnJ) mice as described (Rosenblatt et al., 1999).

Intramuscular miRNA Mimic Injections

Six C57BL/10ScSnJ (wild-type) mice aged 6 weeks were injected with 1.5 μg miRNA Biomix (Life Technologies) or control (Cy3-labeled CTRL miRNA; Life Technologies; AM17120) with tattoo dye to demarcate injection site. Injection was followed by electroporation (2 x 80 V pulses over 20 ms with 980 ms in between pulses) to increase delivery. TAs were harvested after 7 days, snap frozen in liquid-nitrogen-cooled isopentane, and stored at −80°C.

Notexin-Induced Muscle Damage followed by miRNA Mimic Injections

Muscle injury was induced by injecting 6-week-old C57BL/10ScSnJ (wild-type) mice with 10 μl of 10 μg/ml notexin (n = 3). The TA was surgically exposed (incisions <1cm in length), and tattoo dye marked injection location. Skin was closed with sutures to minimize pain and tissue damage for second injection. Three days later, 10 μg of miRNAs was injected into the right TA; a scrambled Cy3-labeled control mimic (CTRL) was injected into the left TA. The muscles were harvested after 7 days post-injury.

Systemic Delivery of PMOs

Four-week-old mdx mice (C57BL/10ScSn-Dmd<>/J) were given a single 800 mg/kg dose of PMO (Gene Tools): 5’-GGCCAAAACCTCGGGCTTACCTGAAAAAT-3’, administered through retro-orbital injection (n = 3). Four weeks post-injection (at 8 weeks of age), mice were euthanized via carbon dioxide inhalation; muscles were harvested as described above. Dystrophin protein and miRNA levels were compared to age-matched wild-type controls.

VBP15 and Prednisolone Administration

Archival samples from two separate studies were obtained. The first set was from a prophylactic trial where 2-week-old mdx mice (C57BL/10ScSn-Dmd<>/J) were dosed with 5 mg/kg prednisolone or 15 mg/kg VBP15 as reported (Heier et al., 2013). The second set was from an “adult trial” where 6-week-old mice were dosed with 5 mg/kg prednisolone (5 mg/kg) or 45 mg/kg VBP15 for 4 months (Heier et al., 2013). Total RNA was extracted from gastrocnemius (mice sacrificed at 8 weeks) or diaphragm (mice sacrificed at 6 months), and miRNA levels were assessed.

Statistical Analysis

For assays with greater than two groups, measurements were compared between groups using one-way ANOVA unless otherwise indicated. Post hoc linear tests between each group were performed; the resulting p value reported in figures was adjusted for multiple testing by Sidak method unless otherwise indicated. The contrasting groups in all post hoc comparisons are indicated in each figure. For assays with two groups where the null hypothesis was testing a change in one direction, a one-tailed, Student’s t test was utilized, whereas in assays where the potential change between groups was + or −, a two-tailed Student’s t test was used. For all bar graphs, data are presented as ± SEM. Details of both tests are specified in the figure legends.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures, four figures, and four tables and can be found with this article online at http://dx.doi.org/10.1016/j.celrep.2015.07.066.

AUTHOR CONTRIBUTIONS

ACKNOWLEDGMENTS

We thank Dr. Vincent Mouly, PhD (Institut de Myologie) for the generous donation of immortalized human myoblasts and the Eurobiobank, Telethon Network Genetic Biobanks (GTB 12001D) for muscle biopsies. This research was supported by the NIH (NIAMS 1R01AR060838-01 Center of Research Translation; NICHD 1S55HD071601-01 Research in Pediatric Developmental Pharmacology; and NICHD 1P50AR060836-01 National Center for Medical Rehabilitation Research). Additional funding was provided by an Exploratory Award from Parent Project Muscular Dystrophy. A.A.F. and C.R.H. were previously supported and J.S.N. is currently supported by NIAMS training grant ST32AR056993. C.R.H. is currently supported by the NHLBI of the NIH under K99 Transition award K99HL130035. E.P.H. and K.N. are founders, shareholders, and hold management roles in ReveraGen BioPharma, a clinical-stage drug development company testing VBP15, and are co-inventors on intellectual property regarding VBP15. K.U. holds a management position in AGADA BioSciences. K.J.B. and E.P.H. are co-inventors of a submitted patent and are also co-inventors on a submitted patent entitled “Method for accurate quantification of clinically valuable proteins in human muscle biopsies.” A.A.F. and E.P.H. are co-inventors of a pending patent entitled “Methods and agents to increase therapeutic dystrophin expression in muscle.”

Received: April 7, 2015
Revised: June 28, 2015
Accepted: July 29, 2015
Published: August 27, 2015
REFERENCES

Cell Reports 12, 1678–1690, September 8, 2015 ©2015 The Authors 1689

