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Applications of the Wei-Lachin Multivariate One-Sided
Test for Multiple Outcomes on Possibly Different Scales

John M. Lachin*

The Biostatistics Center, The George Washington University, Rockville, Maryland, United States of America

Abstract

Many studies aim to assess whether a therapy has a beneficial effect on multiple outcomes simultaneously relative to a
control. Often the joint null hypothesis of no difference for the set of outcomes is tested using separate tests with a
correction for multiple tests, or using a multivariate T2-like MANOVA or global test. However, a more powerful test in this
case is a multivariate one-sided or one-directional test directed at detecting a simultaneous beneficial treatment effect on
each outcome, though not necessarily of the same magnitude. The Wei-Lachin test is a simple 1 df test obtained from a
simple sum of the component statistics that was originally described in the context of a multivariate rank analysis. Under
mild conditions this test provides a maximin efficient test of the null hypothesis of no difference between treatment groups
for all outcomes versus the alternative hypothesis that the experimental treatment is better than control for some or all of
the component outcomes, and not worse for any. Herein applications are described to a simultaneous test for multiple
differences in means, proportions or life-times, and combinations thereof, all on potentially different scales. The evaluation
of sample size and power for such analyses is also described. For a test of means of two outcomes with a common unit
variance and correlation 0.5, the sample size needed to provide 90% power for two separate one-sided tests at the 0.025
level is 64% greater than that needed for the single Wei-Lachin multivariate one-directional test at the 0.05 level. Thus, a
Wei-Lachin test with these operating characteristics is 39% more efficient than two separate tests. Likewise, compared to a
T2-like omnibus test on 2 df, the Wei-Lachin test is 32% more efficient. An example is provided in which the Wei-Lachin test
of multiple components has superior power to a test of a composite outcome.
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Introduction For illustration, throughout we consider the case of two
outcomes, say A and B, although all the procedures herein
generalize to =2 outcomes. We wish to test the null hypothesis H:
(Ag=Ac)N(BE=B() that the experimental therapy is equivalent to
control for both outcomes versus the alternative H:

common in the evaluation of the comparative effectiveness of (Ap>=Ac) (B> Bc) with at least one strict superiority, where
therapies. For example, the NIDDK-funded “Glycemia Reduc- e .Y

tion Approaches in Diabetes: A Comparative Effectiveness”
(GRADE) Study will compare four agents commonly used to
control glucose levels in type 2 (adult) diabetes [1], clinicaltrials.-
gov NCTO01794143. The primary objective is to evaluate the
durability of glucose control over 3-6 years of treatment, the
primary outcome being the time to a confirmed rise of HbAlc (a
measure of average glucose levels) =7% (the therapeutic target
being a value <7%) using a logrank test. A secondary outcome is
to compare each pair of treatments with respect to multiple
components of effectiveness, specifically whether one treatment is
superior to the other with respect to durability of control (event-
times), absence of hypoglycemia over 3 years of treatment
(proportions), and a lower mean body weight at 3 years. Herein
we describe how such a test could be conducted and evaluate the
power of the test or the required sample size.

In many studies an objective is to assess whether an
experimental therapy (E) versus control (C) has beneficial effects
on multiple component outcomes. This is becoming increasingly

means equality for an outcome and where “>> means
superiority. The test against such an alternative is called a
multivariate one-directional (or one-sided) test.

Wei and Lachin [2] proposed a simple 1 df test for such a
hypothesis that was described as a test against an ordered
alternative, or a test of stochastic ordering. The test was later
studied by Lachin [3] and Frick [4,5]. Herein the application of
this test to multiple outcomes is described for a test of means, a test
of proportions, a test of event times and a test with mixed
components such as where one outcome is quantitative (using
means) and another qualitative (using proportions). For each
application, equations are also derived for evaluation of sample
size and power of the test. Multiple model-based tests are also
described. For an analysis of multiple mean differences we show
that the Wei-Lachin test is more powerful than an analysis based
on either separate tests for each outcome, multiplicity adjusted, or
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a multivariate 7%like omnibus test. An example from a major
clinical trial is presented.

Many other tests have also been proposed, principally in the
setting of tests for differences in means. These are reviewed in the
discussion section.

Wei-Lachin Multivariate One-Directional Test and Its
Power

Three versions of the Wei-Lachin test are described. The first
employs the measurements using the original scale of measure-
ment. This test, however, is not invariant to scale transformations
of the individual components. Two scale invariant tests are also
described, one based on standardized values and another based on
scale-independent Z-tests.

Scale-Based Test For Multiple Outcomes

Let X;; designate the jth outcome variable in the ith group with
expectation E(X;) =, 1 =E, C; j=a, b. The subscripts a, b are
used through out to refer to the two outcomes. The jth outcome
could be a quantitative measure or a binary variable (among
others). Assume that a more favorable outcome is represented by a
decreasing expectation for X. Let

511::“&1_:“1:‘(1 (1)

Oh=Hcp— HEp-

A positive value for each represents a beneficial effect of the
experimental therapy over control for each outcome, and a
negative value represents lack of benefit. The null and alternative
hypotheses of interest are

Ho : 5a=0and6b=0 (2)

His : 6,>0 and 6, >0 and sum(d,,05)>0.

Thus, H,g designates that the experimental therapy is at least as
effective as control for both outcomes and is superior to control for
either or both outcomes. This is called the multivariate one-
directional hypothesis.

In the context of an analysis of repeated measures, or
multivariate observations, Wei and Lachin [2] described a
multivariate one-directional test, what they termed a test of
stochastic ordering, i.e. a test of the null hypothesis that is directed
towards an alternative hypothesis of the form H,g in (2). Lachin
[3,6] contrasts this test with other tests, such as the omnibus test.

Consider group-specific estimates fi; with expectation ;. Let 04
and J, designate the estimates of the difference between the

groups for each outcome as defined in (1), and Az(éu 31,)’, where
“”” designates the transpose. With large samples

A~N(AY). (3)

with expectation A=(J, 6p)" and with a covariance matrix X that
is consistently estimable with elements
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afl = V(3a) Oup = COV(SG,S;,)
Oub 0% = V(sb)

The Wei-Lachin test is then provided by

JA 5,46
Zy=—F—== u:F 2, (5)
JxJ os

65 ="V (Sa+08)=[63+ 67+ 260)]

using consistent estimates of the variances and covariance, where
J=(11). Asymptotically Zg~ N(0,1) under Hy from Slutsky’s
theorem. The test rejects Hy in favor of H s when Zg>Z;_, at
level o one-sided. The above generalizes to K>2 outcomes. Note
that the test can also be obtained from the unweighted average of
the group differences relative to its standard error that provides a
convenient average measure of the group differences when all
outcomes are measured on the same scale.

Specific applications include a large sample test of means [3] or
proportions [7], a generalized linear regression model using quasi
likelihoods with a covariance matrix estimated using the informa-
tion sandwich, i.e. GEE [8]; or a normal errors model for the
analysis of repeated measures [9]; or a proportional hazards model
using the information sandwich [10]; or these estimates can be
based on a distribution-free estimate such as the Mann-Whitney
difference that provides a Wilcoxon test [3,11] with the Wei-
Lachin [2] estimate of the covariance matrix. These and other
methods allow for some observations for some outcomes in some
subjects to be missing either completely at random or at random
(conditionally).

Although often termed a multivariate one-directional (one-
sided) test, it is possible to conduct a two-sided one-directional test
that either E is superior to C for all components, or C is superior to
E. In that case, the Wei-Lachin 1 df test statistic is referred to the
two-sided critical value rather than the one-sided value. Herein we
describe the one-sided test.

If beneficial values of X,, are lower, but those for X, are higher,
such as for a test of LDL and HDL, respectively, then the test
would be constructed using the negative of the values for X such
that 6y = fig, — U¢p- If higher values of both measures demonstrate
benefit for the treatment, then both J, and Jd, can be defined as
the difference of treated minus control.

This test would be appropriate when all of the outcome
measurements were on the same scale; for example, as for a test of
a beneficial effect on both systolic and diastolic blood pressure
(both mm Hg), or a test of a beneficial effect on both LDL and
HDL (both mg/dl). Other variations described below would be
appropriate for outcomes with different variances, or measures on
different scales or mixtures of different types of measures, such as
A being a quantitative variable and B being a binary variable.

An alternative approach commonly applied to test the
superiority of an experimental therapy is to base the inference
on the two separate one-sided tests. These tests would require a
correction for multiple tests such as using the Holm [12] improved
Bonferroni procedure which requires that the minimum of the two
p-values be =0.025 (one-sided) and the other =0.05 in order to
declare significance at the 0.05 level for the two tests. The
corresponding alternative hypothesis is
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Hp: [6,>0and/or 6, >0]#£H,s. (6)

However, the alternative H;p includes the case where the
experimental therapy is beneficial for one outcome but harmful for
the other, such as where d,>0 and d;, <0 or vice versa.

Yet another possible test would be the omnibus test using a 77
like test of the null hypothesis H versus

Hio: [0,#0and/or 6, #0]#£H,s. 7

that is provided by

X2=AZ"'A (8)

which is asymptotically distributed as chi-square on 2 (or more
generally K) df. This is likewise inappropriate because the
alternative includes cases where the experimental therapy is worse
than control for either or both outcomes.

Maximin Efficiency of the Wei-Lachin Test

For the case of two measures as herein, the restricted alternative
multivariate one-dimensional hypothesis H,g in (2) corresponds to
all points in the positive orthant of the two-dimensional parameter
space for (04,0p). Since the test is a sum of the two estimates, the
rejection region is defined by the line of values (3,,,3b) satistying
Zg=Z_, that simply connects the points (d,,0) and (0,6,) where
0y =2Z1_40s. Thus the rejection region principally includes an
area of the positive orthant away from the origin, but also includes
elements of the sample space where either 54<0 or &y <0, but not
both. With large sample sizes, the probability of such points is
negligible for true values (J4,05) away from zero, i.e towards the
central projection (the 45° line) of the positive orthant. Lachin [6]
provides figures to illustrate these relationships.

For a given pair of values A =(d41 0p1)" specifying a point in
the positive orthant (J41,0p1), it is readily shown [13] that the
optimal likelihood ratio test of Hy: A=(00)" versus the point
alternative Hy,: A=A based on (3) is

2 (A/lzilA)2
ZLR= AS A, )
where X% g 1s distributed as chi-square on 1 df under Hy. Note that
Z3g is based on a weighted sum of the estimated differences
(A)=(8, 83). Thus, for a given =, every point A; =(341,051) that
defines a unique alternative hypothesis value in the two
dimensional parameter space entails a different optimal linear

combination of the observed A. Further, the same weights are
optimal for any alternative hypothesis defined by points propor-
tional to (641/04, 0p1/0p) with the same correlation, such as the
point (¢d41/04, ¢dp1/ap) for any ¢>0. This implies that the same
weights would be optimal for all points in the parameter space
falling on the vector projection defined by the specified
(841/04s Op1/0p). Thus, there are an infinite number of alternative
hypotheses corresponding to all possible projections in the positive
orthant, each with a different optimal test.

Unfortunately it is not known which projection is optimal since
the actual parameter values (d,,0p) are unknown. However, Frick
[4,5] showed that the Wei-Lachin test is maximin efficient with
respect to whichever weighted test is in fact optimal under the
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condition that £J>0. That is, among the family of linear
combinations of the estimates, the Wei-Lachin test minimizes the
loss in efficiency (power) relative to the unknown optimal linear
combination when this condition applies, in which case it is the
optimal robust linear test of Hys versus His. For two or more
measures with positive correlations, as would be the case under the
alternative hypothesis, Frick’s condition 2J >0 is satisfied.

When this simple condition does not apply, Frick [4] shows that
a simple weighted test is provided by

L'A
VLZEL
that is also maximin efficient where L satisfies the restriction
L'2J=1. For a given Z, the vector L is obtained as L=B'E where
B is the quadratic program solution to miny[y'’Z~'y] under the
constraints that y; >0 Vi and y'J=1. This test will principally be
required in cases where the null hypothesis applies, or the
treatment is inferior for some of the component outcome

measures. A SAS program for this computation is available from
the author (see Discussion).

Zsr= (10)

Scale-based Test for Multiple Means
To illustrate the construction of the Wei-Lachin test, consider a
large sample test for a difference between groups in the means of

.. 2 .
two outcomes where it is assumed that Xj; ~f(,u!-/-,l//ij) with some
distribution f where lﬁi = V(Xj) is the variance of the observations

for the jth outcome in the ith group, or the residual variance after
adjusting for other covariates, and V;,;, = Cov(X4,Xp), i =E, C;
j=a, b. To simplify, assume that there is a common covariance
matrix in the two groups (homoscedasticity) with correlation

Pas=Wa/Wby). Then asymptotically

— 2 Niab

Xiu ia l//a/}’l,'a lp“

<_ )w (5 (s " )|
ab

X, .
i Hio NigNip ‘Pi/ nip

where (n;,, N, Nigp) are the numbers in the ith group with
observed values for outcome A and B separately and joindly, ¢ = E,
C [3].

Then &, = (Xco—Xg,) and 5= (Xcp —Xgp) and A= (Sa Sb)' is

asymptotically distributed as in (3) with covariance matrix

1 1 n n
2 Eab Cab
l//a < + l//ab +
NEa  NcCa NEaNEp  NCallCh
NEab ncab 2 1 1
(e ey iy |
NEaNEp  NCallCh NEp  Ncp
2
g P Oab
= , |-
Oub g b
where the variances 2, 7 and covariance ¥, can be estimated
directly from the available observations [3] under the homosce-

dasticity assumption. The estimated variance of the sum of mean
differences is

> =

GE=V(84+0p) =62+ 67+ 26 (13)
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These then provide the test statistic Zg in (5), or Zg ;. in (10) if
Frick’s condition is not satisfied.

Standardized Score Test for Multiple Means

For an analysis of the means of quantitative variables, the Wei-
Lachin test Zg is not invariant to a change of scale for either of the
two measures. In cases where there is a mixture of quantitative
variables with different dispersions or units, such as LDL measured
in mg/dl and systolic blood pressure measured in mm Hg, it is
more meaningful to compute a scale-invariant test using the
average of the corresponding standardized differences. This might
also be preferred when the variances of the measures differ
substantially, even though measured on the same scale.

Let Yj denote the standardized value Yj=Xj/i; with
V(Yj)=1. Then the standardized difference between groups for
the jth outcome is

3)7:?Q*?Ej:(XQ*Yﬁ)/IAP/:gj/‘L/ (14)

where Ay =(S Ya Sy;,)’ is asymptotically normally distributed with
expectation (04/, dp/¥,) and covariance matrix

1 1 NEab ncab
—+ Pab —
= NEa  Nca NEJNEp  NcallCh (15)
NEab nCab 1 1
P\ ——+—— —+
a
NEaNEp  NcallCh ngy  NCcp

The resulting standardized Wei-Lachin test 1s then provided by

_ Sa/‘/Aja_Fsb/‘/Ajb (16)
Iy o5,y

» <1 1) (1 1)
ogy=\—+—|+|—+— |+
: NEa  Nca Ngp  Ncp

NEab ncab
T
NEaEp  NcallCh

that is consistently estimated from the estimate of the correlation

where

(17)

Pap- When the variances of the outcomes are equal (¥, =V ), then
Zsy=Zs. With equal sample sizes and no missing values,
Nig =Ny =Nigy=n=N /2, (i=E,C), then

\/N |:3a/12/a + Sb/lzlb]
NG

Zsy= (18)

As above, with positive correlations, Frick’s condition ZyJ >0 is
satisfied. If not, then the weighted test is provided by Zg ; using

Ay =@,/ 8/t;) and Ty in (10).

Z-Based Test

In some cases, it may be desired to conduct a test with mixtures
of quantitative and qualitative outcomes (or other types), e.g.
combining tests for means, proportions and/or life-times. In such
cases a multivariate one-directional test with respect to the
multiple outcomes can be obtained from a combination of the
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individual Z-test values of the form

Zs.= _ Gatm (19)

v/ 2+2Cov(z4,zp)

where z; 23,- /6; and the covariance matrix of the Z-tests (X:) has
variances V(z)=1 (j=a,b) and Cov(zy,z5) = Corr(8,.8,) = ;—:b

a
with elements from (12). If nj=np=ny, for i=E,C then
Cov(za,zp) = Pab-

Under the alternative hypothesis where the components {(ASJ} or
{z;} are expected to be positive, then the covariance will likewise
be expected to be positive and Frick’s condition Z.J >0 is readily
satisfied. If this condition is not be satisfied, we would use the test
Zs.1 using Z=(z,zp)" and 22 in licu of A and £ in (10).

It should be noted that this Z-based test is analogous to the
Gastwirth [14] miximin efficient robust test (MERT) that is a
obtained using the sum of the extreme Z-tests from a set of tests
against a closed family of alternatives. For a family with only 2
alternatives (or tests), the MERT is equivalent to the above Z-
based test.

Comparison of the Tests for Means

When the variances are equal (l}a = l/}b), it can readily be shown
that the standardized scores test equals the scale-based test
(Zs=Zgs,y) regardless of the sample sizes or sample fractions.
When the group sample sizes are equal with no missing values, it
can also be shown that the standardized scores test equals the Z-
based test (Zs,y =Zs,z). When both the variances and sample
sizes are equal, then all three tests are equal.

Direct computation of the three tests (Zs, Zs,y, Zs,-) over a

range of sample sizes, variances and group differences shows that

_ 1009 - 1032 - . ) ] o
Zs. > Zsy > Zs, ie. with given proportionalities. Thus,

Zsy and  Zg. are  virtually  equivalent  with
corr(Zs,y,Zs,:)=0.988 over the range of alternatives considered.
These two tests are about 3% greater than the scale-based test with
respective correlations of 0.977 and 0.953. Thus, on this basis the
standardized scores or Z-based test would appear to be preferable.

General Expressions for Power and Sample Size for the
Tests

For each variation of the test, expressions for the evaluation of
sample size and power are readily obtained. Under H;s with

specified values (J,,6p), let 6% = V(S(, + $b) that may be a function
of (34,85) depending on the underlying model. Also, let 6% = tﬁzS/N

represent the factorization of this variance into a term ¢§ and N.
Therefore, from standard equations [15], the power of the test to

reject Hjs for specified values (64,05) is provided by
1 —B=®(Z;_p) where
VNS, +6
Zl,/;=(4b)—21,a (20)

s

and where the variance 6?; is factored as

95 _

vs ¢124 + ¢i + 2¢ab
N

2 _
og= N

(1)

and the individual variances and the covariance are factored as
2 2 . .
O'LZ, =¢,/N, o‘i =¢;,/N, and 0, =¢,,/N. Specific expressions are
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presented below. Conversely, the sample size required to provide
power 1—f to detect specified values (d,4,0p) is provided by

N= |:(Zloc+Zlﬂ)¢S:|2. (22)

9y +0p

To evaluate these equations, is it necessary to provide the

components of q%, ie. (¢2, 7, du), and to specify the values
(04,0p) representing the minimal degree of superiority of treatment
both outcomes of clinical interest.

For the standardized scores test in (16) the variance is likewise

factored as Gé’y =¢§ y/N. Then power is obtained from

VN (3a/Wa+0b/s)
ds.y

and the required sample size from

Z],/;= —Z1_y (23)

N {(zlﬁzl/;)qbs,yr (24)

Oa/Wa+ 00/ Wy
Likewise, for the Z-based test in (19), power is obtained from

\/-]\7(60/¢a +5b/¢b)

Z_p= — —Z\_, (25)
v/ 242Corr(04,0p)
and the required sample size from
e 2
N (Z1—x+Z1_p)\/2+2Co0rr(64,05) (26)

Oa/Pa+ 05/

where Corr(8,,05) =/ ($,$5). Expressions for the correlation
are provided below for specific cases.

Also, each of the above expressions for power can be expressed
as E(Z)=Z_,+Z_p where E(Z) is also termed the non-
centrality parameter of the test. Thus, the first term on the right
hand side of (20), (23) and (25) is the respective expression for E(Z).

Sample Size and Power for Tests for Means

To assess sample size and power for a test, let E(nj, np
Nigh) =N(&;y & Eigp) denote the expected numbers observed in
the ¢th group, where N is the total sample size in the two groups
with at least one observed measurement (not including any subject
missing both A and B measurements).

The Scale-Based Test

From (12), the covariance matrix Cov(Sa 3;,) can be factored as

X =Q/N where
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2 L L) ( éEab éCab )
'//“<65a+ o)V \Guis  ada
éEab éCab Z(L L)
‘”“”(éEaéEﬁéCaﬁa,) i\ on (27)
_ |: ¢2 ¢ab:|
¢ab ¢i

and 6% =¢3/N where

s WaEraticd) | VpEm+Ea)
¢S_|: iEaiCa * *

éEab éCab
2 —_ .
Var (éEaéEb * éCaéCb)]

When the groups are of equal size with the same fractions
observed (i Eip Cian) =(Cu Cp Eap) for i=E,C, then

q% =2 [1//_5 + Vi + (Z%bfab)] (29)

Eenlen

2
b
éa gyb é a éb

When there are equal-sized groups with no missing observations
then ¢,=¢&,=¢,,=0.5 and

b5 =4[W2+ Vi +20,]. (30)

Then the power or sample size required to detect specified
values d, and 6, are provided by (20) or (22), respectively.

For example, suppose we desire to test the treatment group
differences in both systolic (4) and diastolic (B) blood pressures,
lower values of each being better. From existing data the
respective SDs are ¥,=13 mm Hg and ¥, =7 mm Hg. The
correlation  of the two is p,=0.6 which vyields
V. =(0.6)(13)(7)=54.6. Assume that we wish to detect a
treatment group difference equal to 0.25 SD for each measure,
so that d, =(0.25)(13)=3.25and J, =(0.25)(7) =1.75. For equal-
sized groups with no missing observations then &, =&, =¢&,,=0.5
and d’é =4[13% 4+ 72 +2(54.6)] = 1308.8. For a one-sided test at the
0.05 level, the sample size required to provide power of at least 0.9
is provided by

2
N [(1.645—#1.282)\/1308.8} g5 1)

3.25+1.75

or 225 subjects per group (rounded up). From equation (20), with
this sample size the power to detect smaller differences of 0.2 SD
with 0,=2.6 and J,=1.4, then the power using N =450 is
provided by

[\/450(2.6+ 1.4)
Zy_y= |0

—1.645| =0.700 32
Vv1308.8 ] (32

with power ®(0.7)=0.758. Below we also examine the power for
this example using the other tests.
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The Test Using Standardized Means or Z-Scores

When the component measurements have different units or
scales of measurement, then either the test based on the
standardized values or the individual Z-tests is invariant to scale
transformations, and, therefore, preferred. This test may also be
preferred when the component measures have different variances,
even when measured on the same scale.

For the standardized-scores test, from (16),

(éEa + iCa)
éEaéCa

2
¢S,y =

(SR do)) ( EEab Ecan )
plemrea) g, + (33
Emplen Pab Cealm Ccalon (33)

When there are equal-sized groups with no missing observations
(all {£}=0.5) then ¢§Y =8(1+p,p). Power and sample size are
then obtained from (23) and (24).

For the above example, with equal sample sizes and no missing
data, then Corr(sa,sb) =corr(Xq,Xp)=p,=0.6. Since the differ-
ence is specified as a fraction of the standard deviation,
04=1(0.25),and 0, =(0.25)y,, then 0,/¥,=3dp/¥,=0.25 and

the required sample size is

2
1,645+ 1.282) /B +0.
N= (65+'2£;$8(+06) —43865  (34)

that is slightly less than the N required for the scale-based test.
This indicates that for this example, the test based on standardized
scores would have greater power for a given N.

The same numerical result also is obtained using the Z-based
test since in this case the two tests are equal.

Relative Efficiency Versus Other Tests

It 1s also instructive to compare the efficiency of the Wei-Lachin
test versus two one-sided tests or an omnibus test. We do so here in
the context of a test for means, and these results apply in general to
other tests as well. Standard methods for the evaluation of the
asymptotic relative (Pitman) efficiency (ARE) of two tests under a
local alternative would not account for the necessary adjustment to
the significance level for two tests. However, the ARE can be
interpreted as the ratio of sample sizes needed to provide the same
level of power for a specific alternative. This ratio of sample sizes
can be derived directly from (22) relative to the like expression for
either two separate tests or the omnibus test.

Pairwise Tests. Consider the power of the test for means
with equal group sample sizes and residual variance l,bjz for the jth
outcome where each is measured on the same scale so that the
original scale-based test is appropriate. For a given alternative
(0,>0,0,>0). For two tests with equal-sized groups, each being
of size N/2, with no missing data (&, =& =¢E,=1/2), the
variance of the difference for the jth outcome is

V() =4y /N (35)

assuming homoscedasticity. Then the equivalent expression for the
total sample size required based on the separate tests is provided

by

Np =max{ {(21*“/22217/3)21/&:} 2’{(21 7a/2‘|2321—ﬁ)2[//b:| 2} 56
¢ b
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using the Bonferroni correction for 2 one-sided tests. To simplify,
assume that the differences of interest are a common fraction v of
the standard deviations, i.e. d,=w/, and d, =v{, in which case

2AZ_yp+Z1-p?
Np— (Z a/zv-l- 1-p)

(37)

Let Ng denote the total sample size required for the Wei-Lachin
test as obtained from (22) with the value ¢§ that is obtained from
(30) to yield

2
Vo= [ D2 4yl 20

(38)
_ {(21,a+217ﬂ)

2
2 2
) AWl

Thus, the ratio of sample sizes needed with the two-pairwise
one-sided tests versus the Wei-Lachin test is

Np
Ns

{2(211/2+Zl—ﬁ)]2 O, +¥s)’
Ziut Zig | @YY+ 20

Yo+ 20,0,
Yo+ + 20,

2
|:(Zl—a</2+zl—/})}
VAR VAN

Since Z1_,2>2Z1 4 and Y, 2, then Np> Ny.

For example, consider a one-sided test at the 0.05 level (0.025
adjusted for two tests) with 90% power to detect an improvement
E versus C at any level v. Assume a correlation among the A and B
measures of 0.5 and variances l//2=lﬁ§ = 1. Then the ratio of
sample sizes is

2
&:{1.96—0—1.282} { 4 }=1.64 (40)
Ns [1.645+1.282] [2+2(0.5)
which indicates that two separate tests requires a 64% greater
sample size than does the Wei-Lachin test for this o and f, or that
the Wei-Lachin test is 39% more efficient. These results apply
approximately to other tests such as the test for proportions or the
test of life-times.

The Omnibus MANOVA Test. Similarly, the omnibus
multivariate analysis of variance (MANOVA) T>like test of H,
versus the general alternative H,p in (7) is provided by
X2 =(3¢, $b)2—1($a Sb)’ that is asymptotically distributed as chi-
square on 2 df. The corresponding non-centrality parameter is

07 =(340n)Z " (8405)
(41)
= W) Z )

where the inverse covariance matrix is

~ N W2
) 1 b
|

7¢a7
=4('//2‘//%— zb 2[:|- (42)

- lpah a
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Thus

0 & |:v2(‘//5¢127_‘//a‘ﬁb‘pab):| =N0¢2. (43)

2 Vol — Vo

The non-centrality parameter for a test at level o on K df that

provides power 1—f, designated as 0(a,8,K), is readily obtained,
such as from the SAS function CNONCT. Then the required
sample size is provided by

No=0(.p.df)/¢* (44)
For the above example, 62(0.05,0.10,2) = 12.654 and

_ (12,654 2)(Way V)
V2 (%2,'//% *%‘//b‘//ab)

(45)

Then, for the above example, the inverse efficiency relative to
the Wei-Lachin test is provided by the ratio of Ny, to N in (38) to
yield

(12.654)(2)(1—0.25)
No _ (1-0.5)

N, 1.645+1.282]°
s {7; ](12)

=1477 (46)

and the Wei-Lachin test is 32% more efficient for these operating
characteristics. If the computation is conducted for a two-sized
Wei-Lachin test, then Np/Ng=1.204 and the Wei-Lachin test is
17% more efficient.

Power of Tests for Multiple Proportions, and
Mixtures of Proportions and Means

Test for Multiple Proportions

Now consider a large sample test for a difference between
groups in the probabilities (1) of two Bernoulli variables X, and
X where the corresponding sample proportions are distributed as
Dij ~N(7‘c,-j,l//?j/n,-j) with Bernoulli variance l,bi =m;j(1 —my) for the
jth outcome within the ith group and sample sizes n;=NEj;,
i=E,C; j=a,b. The covariance of the Bernoulli variables within
the ith group, Cov(Xiy,Xip), is simply

l//iab = E(/YiaA/ib) - E(A/la)E(/Yzb) = Tiab — TiaTlib (47)

where 7;4 is the probability that both variables are positive [7].
Again we assume that a lower probability is better. If not, the (0, 1)
categories should be reversed.

Then 8, =(pca—pEa) and 8y =(pcp—pry) and A=(8, d5)" is
asymptotically distributed as in (3) with expectation A=(J, dp)’
where d; = (n¢; —ng;) and with covariance matrix
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0'2 Oab
Y= , |=
Oab Op

VE UE, Y gapEab | W caplcab (48)
NEq Nca NEANED ncacy
2 2
Y gaEar | Y caphcan Eb 4 Yo
NEaNED ncallcp nEgp nee

that is consistently estimable from the sample quantities [7]. Then
the statistic Zg is constructed as in (5) based on the sample estimate
of the variance 6% as in (13). Note that in this case, since all
measures are based on Bernoulli variables, there is no advantage
to using the test based on standardized scores. Alternately, the
Z-based test would be constructed as in (19) with
Corr(04,0p) = Gap/(646).

For the assessment of sample size or power the covariance
would be factored as X=Q/N with terms ((/)f,,(/’)i,qbzb) and where

Corr(04:00) = ban/(Dafs)-

For example, assume that the outcomes in the control group are
expected to have probabilities nc, =7y =0.4 with joint proba-
bility mca=0.2 and that the respective probabilities in the
experimental group are Tg,=mng,=0.3 with joint probability
Eay =0.15. Then Y%, =%, =(0.3)(0.7), Y&, =%, =(0.4)(0.6),
W gy =(0.15—0.3%), and ¢, =(0.20—0.4%). With equal sized
groups and no missing observations, then &, =¢&;==~Eq,=1/2

(i=E,C) and

¢ =
49
4[(0.3)(0.7)+(0.4)(0.6) -+ (0.15—0.3%) +(0.20 — 0.4%)] =2.2(§ )

with the resulting computation

2
N= {(1-645“282)\/27} =471.2. (50)

2(0.1)

The correlation of the estimates is

V2V gar + ¥ can)
N R
~ V2[(0.15-0.3%)+(0.20—0.4%)]
2,/(0.3)(0.7) + (0.4)(0.6)

Corr(s,,,éb) =

(51)
=0.10541.

Then the test based on Z-test values would require

v |(1:64541.282)y2 4 0.10541
= 0.1

2 v2,/(0.3)(0.7)+(0.4)(0.6)

—405.85.  (52)

Thus, the Z-based test is again more efficient than the scale-
based test.
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Tests for Means and Proportions

Scale-Based Test. It is also possible to determine the joint
distribution of a test for means of one outcome and a test for
proportions of another. Let X4 denote a quantitative measure-
ment with means y;, and variance lﬁi, assuming homoscedasticity,
and X, denote a binary variable with probability 7 and variance
W?h =7;(1 —7jp) in the ith group (i=FE,C). The covariance of the
two in the ith group is provided by

lpz’ab = Cov( Xy, Xip) = E(Xio Xip) — E(Xia) E(X3p)
= nfb(ﬂia(l) - luf(l)

where i,y = E(Xia|Xip=1) is the mean of the quantitative
variable Xj, among those where the binary variable Xy =1. Then

s o . . . 1 .
0u=(Xcu— XEg,) with variance 0'2 = npi (— + — ), assuming

NEaq Nca
op=(pcy—pEey) with  variance
0',27 = l//zE,, /ngy+ '//2Cb /ncp. The covariance is

homoscedasticity,  and

Gaby=Cov(d, 0p) = Cov(X kaspra) + Cov(X caspcn)
_ Co V(XEa aXEb)nEab + Co V(XCa aXCb)nCab

NEaNED ncalcp (54)
_ lpEgb”Eab l//Caanab
NENED ncallcp

To conduct the test these variances and covariances can be
estimated consistently from the corresponding sample estimates.
Sample size and power can then be evaluated as above.

For example, assume that we wish to test the difference between
groups in the mean level of LDL and the prevalence of
hypertension. Assume a SD , =20 in both groups and that the
difference of interest is d,=35 that corresponds to a 0.25 SD
difference. While it is not necessary to specify the actual mean
values within each group to compute dg, it is necessary to compute
the covariance. Within each group assume that the overall mean
values are g, =170 and pe, =175 (corresponding to d,=5), and
a greater treatment effect among those who are hypertensive with
mean values fig,y=175 and pc,qy=185. Assume that the
probabilities of being hypertensive are 7g,=0.60 and
ncp =0.70, yielding d,=0.1. Then the variance components are
¥, =(0.6)(0.4)=0.24, ¥, =(0.7)(0.3)=0.21,
Vg =(0.6)(175—170)=3.0, and Y, =(0.7)(185—175)=7.

Assuming equal sized groups with no missing data, then
A=(8, 6y) is asymptotically normally distributed with covariance

matrix X=Q/N and

O 02 b } _ [ 4 2 gy +V can) }
bu ¥ 20 gy Hcw) 2W i V) 55)
420y 2(3+7) 1600 20
~2647) 2[0.24+0.21J :{ 20 0.9}

and aé =1600.9+2(20)=1640.9. Thus, the required sample size
for a one-sided test at the 0.05 level and 90% power is provided by
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=540.5. (56)

2
N {(1.645+ 1.282)\/1640.9]
N 5.1

Z-Based Test. Alternately, since the scale-based test is not
invariant under transformations, it would be more appropriate to
employ a combination of the Z-tests. In this case,

S O
by 1 T
a +
lp éEa éCa
% _ % — Tch — TLED
Pp v B v \/TEEb(l —Tgp) N an({_an)
¢ o Cb Eap
CoW(Z4,Zp) = Corr(S, ) = P _
¢a¢b
Vg SEar | WeanScap
' 57
ﬁEaéEb éCaéCb ( )

[T T Wi Vo
Va fE(,+fCa Eep * Sap

When there are equal sample sizes between groups with no
missing data for either measure then

o _ b
¢o 20,
% __ mh—Tmp Tch —TED .
by \/2l//2Eb+2!p%jb V2 (1 —ng)+2nep(l—nep) (58)
COV(Za,Zb): 2(‘//Eab + !//Cab) )
20\ 20+ 1)
Then for this example
Oy 5 op 0.1
4= =(.125; —=———"=0.1054 (59
o 2020) ¢p  /2[0.24+0.21] (59)
ConZaZp) = ———20+]) 5271

2(20)1/2(0.24+0.21) =022

and

2
1,645+ 1.282),/2+2(0.5271) |
N= 0.12540.1054 =4929. (60)

Thus, the Z-based test would provide greater power in this case.
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Power of Tests for Multiple Event-Times

Tests for Multiple Event-times

For right censored event time data, a member of the family of
Aalen-Gill tests [16,17], also known as the G” family of tests of
Harrington and Fleming [18], can be used to test the hypothesis of
equal hazard functions, or survival functions, between two groups.
This family includes the logrank test that is asymptotically fully
efficient under a proportional hazards model and is equivalent to
the score test of the unadjusted group effect in a Cox Proportional
Hazards model. It also includes the Peto-Peto-Prentice modified
Wilcoxon test that is optimal under a survival proportional odds
model. Andersen, Borgan, Gill and Keiding [19] describe a
generalization of the tests for K>2 groups. These tests are
equivalent to the family of weighted Mantel-Haenszel statistics
described by Kalbfleisch and Prentice [20].

Wei and Lachin [2] describe a multivariate rank test for event
times that is a generalization of the above families of tests to the
case of multiple time-to-event outcomes. They also introduced the
one-directional multivariate test described herein, what they
termed the test of stochastic ordering, to assess whether the
treatment group event times differed in a favorable direction for all
of the outcomes. A SAS macro for these computations is available
(see discussion). The computational details will not be provided
herein.

Lakatos [21] presents a general approach to the evaluation of
sample size and power for the Mantel-logrank test that allows for
time varying hazard rates, proportional or non-proportional
hazards, and other design features. When the hazard rates are
assumed constant over time with a constant of proportionality, a
simple exponential model applies in which case the methods of
Rubenstein et al. [22] or Lachin and Foulkes [23] can be applied.
Herein we describe the computation of sample size or power for
the Wei-Lachin test for multiple event-time outcomes under the
exponential model of Lachin and Foulkes that includes a
generalization of the method described by Lachin [15] based on
the difference in the exponential hazard rates. Freedman [24]
showed that the latter expression can also be derived from the
expected value of the logrank chi-square test value under a
proportional hazards model. Lachin and Foulkes [23] also show
that the power of the test based on the difference in the estimated
hazards is virtually identical to that for a test based on the log
hazard ratio.

We assume that there are two or more outcome events where no
one outcome is a competing risk for the other outcomes, such as
the time to development of diabetic retinopathy and time to
developing diabetic nephropathy, neither of which is fatal. Let
X =1 denote that the kth subject had the jth event in the ith
group at time /;, and Xy, =0 denote right censoring at time Uy,
that in turn is the minimum of the loss to follow-up time and the
administrative censoring time for those who remain free of the jth
outcome, ¢ =E, C; j=a, b. Then the total number of subjects with
an event (called events) (D;;) and total time at risk (7) for the ith
group and the jth outcome are

D= Zk Xijk (61)

Ty=" [Nty + (1 — Xia) U]
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Note that the X;j are non-iid Bernoulli variables with event
probabilities that are a function of the underlying hazard rates for
the event and losses to follow-up and the period of exposure U

Within each group, for each outcome assume a constant hazard
rate /; that is consistently estimated as j«zj/‘=Dij/ Tj. Let E(Dy)
designate the expected number of events based on the assumed
hazard rate A;, sample size, periods of recruitment and follow-up,
and losses-to follow-up in that group. Asymptotically,

where U%j = /lZ- /E(Djy) that is consistently estimated as f)i- = ;13 /Dj.

Then 8= (Aca—rza), Op=(hco—Am) and, A=(d, dp) is
asymptotically ~ distributed as in (3) with expectations
0a=(Aca—AEqa) and 6p=(Acp—2pp) and covariance matrix X
with elements V(S(,), V(3;,) and Cov(éa 3/,). A test based on A will
have power approximately equal to that of the Wei-Lachin
multivariate one-directional test using the Wei-Lachin bivariate
Aalen-Gill logrank test under proportional hazards. Thus, we
describe the power of the bivariate logrank test based on the test of
the difference in exponential hazards. Then the scale-based test
employs

02 =V (8,)+ V(85) —2Cov(8, 8s) (63)

2 2
2 2

5= 2 402 —
V(6)) = v+ E(Dg) = E(Dg)

that is consistently estimated using iij and the observed Dy,
j=a,b.

File S1 shows that the covariance is expressed as

E[Dgw)—E[Dgaws) | E[Dcap) — E[Dcapi]
E[Tg,)E[Tg) E[Tc,)E[Tcp)

Cov(8, 0p)= (64)

where Dy is the number of subjects who experience both the 4
and B events and E[Dj,y] is the expected number with both
events under the assumption that the Bernoulli variables Xj, and
Xipk are independent. Each is consistently estimated from the
observed numbers of events and total time at risk. The
computational expression for Dj,y is also presented in File S1.
The resulting test as in (5) then is based on the variance estimate

72 92 22 72
~2 )“Ea )“Ca /IEb )“Cb

Py o
" Dg, Dcu Dpy Doy

(65)
Dcap—Dcavr
TcaTcp

2 DEab - DEabI
TEa TEb

that is solely a function of the numbers of individual and joint
events, the corresponding event times and the corresponding times
of at risk. Accordingly, the power of the test is a function of the
expected numbers of events and expected time at risk that in turn
are a function of the design parameters and sample size.

Lachin and Foulkes [23] provide the expression for the
probabilities of events {m;} for given hazard rates for events
{%4} and losses to follow-up {n;}, recruitment period R with
recruitment shape parameter y and total follow-up Q, and sample
size n;;= N&;. Then the expected number of events is obtained as

October 2014 | Volume 9 | Issue 10 | e108784



E(Dj;)=N¢ym; and likewise the expected period at risk as
E(Ty)=N¢&;t;. File S1 also provides expressions for E(Diap),
E(Diupr) and E(Ty). Then 0% =¢§/N where

2 2,0 5 % A3 g
Ps=but == ot b O
“ @ Epamed Ecamca Emmmy  EopTcn (

66)

o | Cas [ma —Tpapt] | Ccap[ma —Tcani]

EraTECEnTED Ecatcalonten

Power and sample size are then obtained from (20) and (22).

However, to obtain an analytic solution to these equations, a
specific model must be specified for the dependence of the event-
times with a given correlation, such as the Marshall and Olkin [25]
bivariate exponential model. Hougaard [26] provides a review of
such models. Alternately, a simulation model could be imple-
mented using a given bivariate exponential distribution. Herein, a
simpler approach is described using a shared frailty.

Assume that the two event types share a common frailty with
parameter A;r. Then in the simulation model, in the ith group,
three random exponential times are generated as

t) ~exponential(Li, — 2ir)
ty ~ exponential(2p — Air)

ty ~ exponential(Air)

and the correlated exponential event times are then obtained as

tio =min(zy,t3) ~ exponential ()

tip =min(tp,t3) ~ exponential(Lp).

from which the probability 7, of both events can be obtained.

For example, consider a Q=15 year study with linear (constant)
recruitment over a R=3 year interval allowing for a loss-to-follow-
up hazard rate of 0.05 per year and with equal size groups. Within
the control group assume that the hazard rates are ¢, =0.2/year
and A¢p =0.3/year and that the experimental therapy yields risk
reductions of RR,=0.8 and RR,=2/3, or hazard rates of
AEa=0.16/y and Agy=0.2/y so that ,=0.04 and 5, =0.10. To
allow for a correlation of the event times we assume shared frailties
of Agrp=0.08 and Acr=0.1. For a given sample size, the
simulation model (herein with 10,000 replications) provides direct
computation (within a small degree of error) of the expected
quantities (E(Dj), etc.) from which power is computed. By a
simple search it was found that a n of 197 per group provides a
one-sided one-directional test with 90% power.

For this sample size, the expected number of events marginally
are E(D¢,)=90.3, E(Dc¢)=116.9, E(Dg,)=769, and
E(Dg)=904; and the expected patient-years at risk are
E(T¢,)=451.6, E(Tcp)=389.8, E(TE,)=480.6, and
E(Tgp)=451.8. The numbers of subjects with both events with
the shared frailty are E(Dcgp)=67.4 and E(Dge)=51.6, and
those expected under independence (by chance) are

E(Dcupr)=54.8 and E(Dgupr)=36.3. These yield 02 =7.76E4,
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o% =12.1E4, and oup=1.43E-4, that provides

corr(8,,0)=0.147 and 6%=22.7E 4. Substituting into (20),
yields Z1_g=1.292 and power = 0.902.

A similar computation using (25) shows that an n of 197 per
group would provide power = 0.885 using the Z-based test,
indicating that in this setting the Z-based test would have less
power than the original scale based test.

Generalizations
It 1s also possible to obtain a test based on the combination of
group differences in hazard rates and differences in proportions or
means. As in the preceding sections this requires the derivation of
the covariance of the measures within each treatment group.
Alternately, a multivariate one-directional test can be obtained
using multiple regression models as now described.

Model-Based Analysis of Multiple Outcomes

The preceding sections describe the application of the Wei-
Lachin test to a combination of the group differences in means or
proportions or hazard rates. In each case the covariance of the
group differences, or of the corresponding Z-values, is described.
The test statistic can then be computed using a consistent sample
estimate of the variances and covariance(s), and the expression for
power can be obtained using specified values for these parameters.
In principle it is possible to construct a test for combinations of
other types of outcomes, such as the difference in rates (counts) of
events under a Poisson model, and to derive the equations to assess
the power of the tests. However, it is more convenient to provide
model-based generalizations of this approach.

From basic principles, Pipper, Ritz and Bisgaard [27] describe
the joint distribution of parameter estimates from multiple models,
not necessarily all of the same type. Consider two models for each
of two outcomes, each with K; parameters and coefficient
estimates éj=((§jl e 9j1<j)’. Arbitrarily, assume that the first
parameter estimate éjl represents the difference between groups
on some scale, no difference represented by a value of zero, and
the remaining K; estimates represent the intercept (if any) and

other covariate effects. Then U[j(éj)= [U(;jl(@j) . U‘J'Kf(@f) is
the score vector for the fth subject and I,(@j) is the model based
estimate of the expected information for the jth outcome. Also, let
U;(0)) denote the Kj x N matrix where the £th column is the score

vector Ug(0)). Then the generalization of the information
sandwich robust estimate of the covariance matrix of the joint

set of estimates 8= (0,0'y) is provided by

e,  Zr(0..05)

Tr(0)= (Va : 67
MO @by Za@n) (7

where
LR(0)=L0)""U0)U0)1,0)"",  j=ab (68)

Er(04,05) =1,(0.) " Uu(0.)U(05)T5(05) "

The estimated variances of the group coeflicients in the two

models is then provided by the elements 5%:21?(@4;)1,1 and
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&/%ZER(éb)Lb and the covariance by &(,bzzR(éa,éb)u. The
scale-based test is then provided by (5) with (6,1,051) substituted
for (84,00). Alternately, Z-tests of the group effect in the two
models are then provided by Z,-=é,-1/o*j, j=a,b, and the
correlation of these tests by
CoW(Za,Zp) = Corr(0,1,051) =645/ (6463). This provides the Z-
based test as in (19).

Pipper et al. also describe the application of the joint models
where data for a subject is missing for one of the component
models (but not both). Under the assumption of missing
completely at random, then the score vector elements for that
subject are set to zero in the corresponding score matrix U.

It would be difficult to evaluate the sample size and power of
such a model-based test. However, simple computations such as
those herein could be applied, e.g. the power of a test for a
difference in means and proportions when the actual analysis will
employ a linear regression model and a logistic model.

Pipper et al. originally provided an R package multmod to fit
multiple models and to compute the covariances of the coefficients
in the models. That has since been replaced by the R package
multcomp.

Example - The Diabetes Prevention Program

The Diabetes Prevention Program compared the risk of onset of
type 2 diabetes and deterioration of metabolic function among
participants randomly assigned to an intensive lifestyle interven-
tion (ILS) versus treatment with the glucose lowering drug
metformin and versus a placebo control with no lifestyle
intervention [28]. The study showed that intensive lifestyle
provided a 58% reduction in diabetes risk versus placebo and
39% versus metformin, and that metformin produced a 31%
reduction versus placebo. The study also evaluated the differences
among treatments in the prevalence of developing the metabolic
syndrome, a metabolic state that is linked not only with risk of onset
of diabetes but also the risk of developing cardiovascular disease.
The prevalence of the metabolic syndrome is characterized by 3 or
more of the following 5 criteria: abdominal obesity defined as a
waist circumference >102 cm among men or >88 cm among
women, serum triglycerides (a bad cholesterol) =150 mg/dL,
HDL (a good cholesterol) <40 mg/dL among men or <50 mg/
dL. among women, systolic/diastolic blood pressure =130/85 mm
Hg, and fasting glucose =110 mg/dL, the latter met by many of
the study subjects. [29]

Of the 3234 randomized, 1388 (43%) already met the metabolic
syndrome criteria. Among the remainder who were evaluated at 3
years of follow-up (i.e., free of the syndrome on entry), 22% (363 of
1673) had the syndrome present. [30] Herein we compare the
prevalence of the metabolic syndrome and its components at 3
years of follow-up among those in the lifestyle versus metformin
treated groups.

The classification of the metabolic syndrome is a composite
outcome, i.e. a single binary trait to designate that the criteria were
met. An alternative would be to construct an analysis of the 5
binary traits using the one-directional multivariate test described
herein.

For two of the traits (waist circumference and HDL) there are
separate criteria for men and women, and for hypertension both
systolic and diastolic blood pressure are employed, whereas for the
other two traits there is a single cutpoint for the corresponding
quantitative measure. Thus an alternate analysis would be to used
these three composite binary traits in conjunction with an analysis
of the other two quantitative variables (triglycerides and glucose).

PLOS ONE | www.plosone.org

1

Wei-Lachin Multivariate One-Sided Test for Multiple Outcomes

Alternately, rather than use any cutpoints to construct derived
binary variables, an analysis could compare the groups with
respect to the six quantitative traits (including systolic and diastolic
blood pressure) simultaneously.

Table 1 presents a comparison of the lifestyle versus metformin
groups for each of the binary outcomes and each of the
corresponding quantitative outcomes. The overall prevalence of
the metabolic syndrome using the composite binary outcome does
not differ significantly between groups, although the prevalence is
about 2% lower in the lifestyle group.

For all variables other than HDL, higher values are worse, so
that a positive difference between metformin minus lifestyle
indicates a benefit for lifestyle. In order for the same to apply to
HDL, the analysis employed the negative values of HDL.

All p-values are one-sided. Some of the one-sided p-values are
>(0.5 indicating a negative Z-value favoring metformin. However,
most of these differences are close to zero. For no measure is there
evidence that intensive lifestyle is worse than metformin, and all
significant differences favor the lifestyle group. Thus, these data
are consistent with the alternative hypothesis that lifestyle has a
beneficial effect on some of the outcomes, and no adverse effect for
any.

Table 2 presents the correlations among the measurements.
The modest to low correlations suggest that a multivariate test will
provide greater power than individual tests, especially when the
latter are adjusted for multiple tests.

Table 3 then presents the Wei-Lachin scale-based and Z-based
one-directional multivariate test Z and one-sided p-values for three
different analyses of these data. As would be expected, the analysis
of all six quantitative traits is more powerful or sensitive than the
analyses involving binary traits, with p-values <0.001 using either
the scale or Z-based tests. The analysis of the 5 binary indicator
variables produces less significant results, and the scale-based test
for these data proves to be more powerful (larger Z-value) than the
Z-based test, although both are significant. An alternative would
be to conduct an analysis of the three binary traits defined from
multiple criteria (waist, HDL, hypertension) and the other two
quantitative traits (triglycerides and glucose). This yields results
intermediate to those of the analysis of all quantitative and all
binary traits.

Regardless of which of these options might have been chosen as
the basis for the analysis, all would have provided a statistically
significant result whereas the analysis of the composite metabolic
syndrome outcome failed to demonstrate a beneficial effect of
lifestyle versus metformin (Table 1, p =0.22).

Discussion

A number of multivariate one-directional or one-sided tests
have been described. Virtually all were developed to apply to a
multivariate test of the difference in means between two groups for
a multivariate outcome, such as repeated measures. These are also

described for the case of two measures with group differences 9,
and 8,, as described above.

For a test based on multivariate normal observations, such as K
repeated measures, Kudo [31] described the multivariate one-
sided likelihood ratio test (LRT') of the K-variate generalization of
the ordered hypotheses in (2) assuming that the covariance matrix
2 is known, and Pearlman [32] described the LRT when the
estimated covariance matrix is employed. For the case of the two
statistics herein, Pearlman’s LRT is based on the statistic

Sir= min[Sa Vv 0), (Sb V 0)] =max|0, min(Sa,Sb)] (69)
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Table 1. Differences between the DPP intensive lifestyle (ILS, n=571) versus metformin (MET, n=557) treated patients at three
years of follow-up with respect to quantitative trait components of the metabolic syndrome, and binary indicators of abnormal
levels, and the overall incidence of the metabolic syndrome among those free of the syndrome on entry.

Mean (SE) %
Characteristic ILS MET p ILS MET p
Waist (cm) 97 (0.61) 99 (0.60) 0.0030 54.6 63.4 0.0015
Triglycerides (mg/dl) 115 (2.5) 125 (2.9) 0.0017 19.3 253 0.0074
HDL (mg/dl) 51.3 (0.53) 50.7 (0.53) 0.10 36.6 379 0.33
BP hypertension 9.5 9.3 0.53
Systolic (mm Hg) 120 (0.64) 122 (0.60) 0.0046
Diastolic (mm Hg) 74 (0.40) 76 (0.37) 0.0001
Glucose (mg/dL) 104 (0.49) 103 (0.53) 0.59 24.1 235 0.60
Metabolic Syndrome 18.2 20.1 0.22

variables.
doi:10.1371/journal.pone.0108784.t001

where “V” designates the maximum of the two quantities. Thus, if

cither & is negative the resulting test statistic quantity is zero.
However, the distribution of Sy is computationally difficult and
the test is not convenient for practical use.

Tang, Gnecco and Geller [33] proposed a computationally
simpler approximation to the LR7T. Their approximate or ALR
test Is not an approximation in the sense, say, of a series expansion,
but rather is an approximation in the sense that the alternative
hypothesis parameter space is an approximation of that of the
LRT. Their statistic is of the form

Surr=(ZyV 0)+(Zy v 0)] (70)

where Za and Z;, are uncorrelated standardized Z-statistics

obtained as linear transformations of the A vector. Under the
assumption that the covariance matrix is known, then
7Z=(Z, Z},)’=A’A where A is a square matrix such that
AA=X7! and A’ZTA=I, such as is obtained from a Choleski
decomposition. The distribution of this statistic is a simplified Chi-
bar-squared distribution [34], though still requiring some compu-
tation to obtain a p-value. However, when an estimate of the
covariance matrix is employed to provide the A transformation
matrix, various authors have shown that the test can be serverely
liberal, i.e. has an inflated type I error probability. In this case,
Tambhane and Logan [35] described an accurate approximation to
the distribution of the resulting test using a mixture of F-
distributions, that also requires some computation to determine
levels of significance.

Analysis restricted to those free of the metabolic syndrome at entry. One-sided p-values computed from a t-test for quantitative measures and chi-square test for binary

However, this test has the unsavory feature that if either b value
is negative, regardless how greatly so, the value is set to zero in the
computation of the test statistic. Thus, for example if Z, = — 1000
and Z,=10, then S4.zr=10, and depending on the estimated
covariance values, could reject Hog in favor of H g, even though it
1s clear that H g does not apply. In a recent overview, Tamhane
and Logan [36] have suggested that “If several endpoints show
moderate negative differences or even if a few show very large
negative differences, then these tests should not be used because
the a priori assumption of positive treatment effects in all
endpoints is questionable.” However, to apply this recommenda-
tion in practice violates the principle that the test statistic for a
study be specified @ priori. In effect, the recommended practice
could be viewed as a two-stage inference process - first determine if
the differences are positive, and if so conduct the test. This would
clearly inflate the type I error probability.

Other tests have been proposed that are based in part on
Hotelling’s T2 statistic that is equivalent to the expression in (8)
and is distributed as 7% on K df under the assumption of
multivariate normality of the observations. Under this assumption,
T? provides an optimal test of the null hypothesis against the global
alternative presented in (7). Follman [37] describes a test of H|,
versus Hy.: (8,4 0p) >0 that is not the same as H,g above. His
Xf_ test rejects H in favor of H if T?is significant at level 20 and
($a+3b)>0. This test also could lead to rejection of H, when

cither the true d, or J; is a large negative value and the other an
even larger positive value.

Table 2. Correlations among the component measurements obtained from the pooled within-groups covariance matrix.

Triglycerides HDL SBP DBP Glucose
Waist (cm) 0.07 0.24 0.13 0.19 0.28
Triglycerides (mg/dl) 0.27 0.03 0.1 0.06
HDL (mg/dl) —0.09 0.04 0.14
Systolic (mm Hg) 0.55 0.08
Diastolic (mm Hg) 0.05

doi:10.1371/journal.pone.0108784.t002
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Table 3. The Wei-Lachin scale-based and Z-based one-directional multivariate test Z and one-sided p-values for three different

Scale-based Test

Z-based Test

Analysis Z, Ps Zs, Psz

All quantitative (6) 3.52 0.00022 3.48 0.00025
All binary (5) 237 0.0089 222 0.0131
Mixed (5) 249 0.0064 2.02 0.0215

doi:10.1371/journal.pone.0108784.t003

Bloch, Lai and Tubert-Bitter [38] describe another test
procedure which requires that 72 reach significance at level o
two-sided and that both individual one-sided i-tests of an
indifference hypothesis be significant at level o. The indifference
hypothesis is Hoy: (0>09,> —¢) and (0> 0p > —¢) for some small
positive value &, and the alternative hypothesis is H;s as in (2)
above so that the one-sided ¢-test is of the form

(6;,—2)

tj=—1t—=

Nz

This test was later criticized by Pearlman and Wu [39] who
proposed use of the one-sided LRT of Pearlman [32] in lieu of 7%,
among other improvements. The result of either test, however,
depends on the specification of the value ¢ and thus the test may
not be uniformly acceptable.

Other tests have also been applied, although not specifically
designed to test H(, against the one-sided alternative Hg in (2).
O’Brien [13] proposed his ordinary least squares (OLS) and
weigthed least squares (WLS) tests of H, versus the alternative
hypothesis of a common difference H,4: 6, =03, =0#0. Thus the
alternative hypothesis consists of the line of equality other than the
origin. The one-sided version of this test will also be sensitive to
alternatives where d, and J; are of similar positive magnitude, but
will not be optimal against the general alternative H,s. Pocock,
Geller and Tsiatis [40] describe the application of these tests to the
analysis of multiple outcomes in clinical trials on different scales.

For a two group comparison of a vector of repeated measures,
under the usual normal errors assumptions O’Brien also suggested
that his statistics were distributed as {. However, the exact small
sample distribution with normal errors is not known and many
authors have shown that the resulting ¢-statistics have an inflated
type I error probability. For a vector of repeated measures in two
groups, Liuter [41] shows that statistics that employ weighted
averages, as in O’Brien’s WLS test, are indeed distributed as ¢
provided that the weights are functions of the empirical covariance
matrix estimated from all groups combined rather than the pooled
within-groups covariance matrix estimate as employed by
O’Brien. He proposes a family of such weighted tests that includes

(71)
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the Wei-Lachin test as a trivial special case. Frick [42] also showed
that O’Brien’s OLS test is biased.

Thus, among the various tests that have been proposed that
could be applied to the assessment of simultanecous differences
between groups for multiple outcomes, the Wei-Lachin test has the
advantages that it is simple to compute; can be applied to mixtures
of outcomes on different scales (e.g. means and proportions); that it
has a large sample normal distribution (or a ¢-distribution with
normal errors); provides a test with type I error probabilities close
to the nominal levels with generally acceptable sample sizes; is
directed towards the specific multivariate one-directional alterna-
tive of interest, is maximin efficient relative to the possible true but
unknowable optimal test, and readily provides for the computation
of sample size and power.

Rahlfsand Vester [43] describe applications of the Wei-Lachin
test to the analysis of multiple outcomes using the multivariate
Mann-Whitney difference analysis described initially by Thall and
Lachin [11]. The authors are affiliated with idv Data Analysis and
Study Planning that also markets a program (TESTIMATE) that
conducts such Wei-Lachin analyses. Pan [44] also recently
presented a review of various procedures including the Wei-
Lachin test (called the SUM test therein) and some of the above
referenced one-directional procedures and showed by simulation
that the Wei-Lachin test had good power when the outcomes
tended to jointly show beneficial effects.

Programs for computations herein are available from www.bsc.
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when Frick’s condition does not apply, the simulation event time
model, and the Wei-Lachin multivariate rank test.
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